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brain. They find that there is a wide array
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chromatic information more reliably than

AF10 does, mostly due to a more
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SUMMARY
Larval zebrafish (Danio rerio) are an ideal organism for studyingcolor vision, as their retinapossesses four types
ofconephotoreceptors, coveringmostof thevisible rangeand into theUV.1,2 Additionally, their eyeandnervous
systems are accessible to imaging, given that they are naturally transparent.3–5 Recent studies have found that,
through a set of wavelength-range-specific horizontal, bipolar, and retinal ganglion cells (RGCs),6–9 the eye re-
lays tetrachromatic information to several retinorecipient areas (RAs).10–13 The main RA is the optic tectum,
receiving 97% of the RGC axons via the neuropil mass termed arborization field 10 (AF10).14,15 Here, we aim
to understand the processing of chromatic signals at the interface betweenRGCs and theirmajor brain targets.
We used 2-photon calcium imaging to separately measure the responses of RGCs and neurons in the brain to
four different chromatic stimuli in awake animals.We find that chromatic information is widespread throughout
the brain, with a large variety of responses among RGCs, and an even greater diversity in their targets. Specific
combinationsof response typesareenriched in specific nuclei, but there is nosingle color processingstructure.
In the main interface in this pathway, the connection between AF10 and tectum, we observe key elements of
neural processing, such asenhancedsignal decorrelationand improvedchromaticdecoding.16,17A richer stim-
ulus set revealed that these enhancements occur in the context of amoredistributed code in tectum, facilitating
chromatic signal association in this small vertebrate brain.
RESULTS

Stimulation with different wavelengths evokes diverse
responses in RGCs and central brain
Our goalwas to characterize the processing of chromatic informa-

tion from the fish’s eye to the rest of the brain. For this, we utilized

a custom 4-channel projector (365-, 397-, 463-, and 606-nm

LEDs) synchronized to the scanning of a 2-photon microscope

(Figures 1A and 1B). We showed four spectrally different, tempo-

rally oscillating full-field stimuli to the animal (Figure 1C). Their in-

tensity and wavelength were selected to approximate the natural-

istic spectrum larvae experience in the wild6 (Figure S1A). We

genetically targeted the calcium indicator GCaMP6s18 to either

the axonal terminals of retinal ganglion cells (RGCs) projecting

from the eye to the different arborization fields (AFs), or a set of ret-

inorecipient areas (RAs) in the dorsal brain (Figures 1D and S1E).

We imaged one hemisphere for AFs and both for RAs. We stimu-

lated the fish from below, as all four cone types are represented

more evenly in the dorsal retina,6,8 and rods are not yet active at

this developmental stage (19,20; but see Venkatraman et al.21).

This yielded a variety of calcium responses in both the RGCs

and RAs (Figures 1E, 1F, and S1F–S1H).
Current Biology 31, 1–
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As a first step, we wanted to describe the wavelength speci-

ficity of the regions of interest (ROIs). Using a linear model that

takes into consideration the spectra of our stimuli and the zebra-

fish cones, we extracted the contribution (gain) of each cone

type to the observed responses (Figure 1H).22,23 This confirmed

earlier findings that blue gains are mostly negative (indicative of

OFF responses) and that UV gains are typically higher than the

rest.6,8,24–27 We used these gains to define spectral polarities

for both populations (Figures 1I, S1B, and S1C). There was a

higher diversity of polarities in RAs compared to RGCs, although

most RGCs matched the RA patterns, and most polarities were

polychromatic.

Do different wavelength ranges map to particular brain re-

gions? To test this, we compared the spatial activation patterns

elicited in both populations via registration of all imaging volumes

to a reference brain (Figure 1G).28 Each stimulus elicited only

partially overlapping activation patterns, both in the antero-pos-

terior as well as in the dorso-ventral axis (Figures 1J and S1D).

Furthermore, the RGC and RA patterns show a weak wave-

length-dependent gradient from the posterior to the anterior vi-

sual field based on tectal retinotopy.29 3D quantification of these

patterns revealed that the UV pattern is the most unique,
9, May 10, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Stimulation with different wavelengths evokes a variety of responses in zebrafish RGCs and central brain

(A) Schematic of the setup used for stimulation, projecting chromatic stimuli from the bottom using a custom-designed projector with four channels. The inset

illustrates alternation between stimulation and recording over the mirror turning cycle.

(B) Absorption spectra of the zebrafish cones (solid lines) and emission spectra of the LEDs (dotted lines) used in the projector.

(C) Full-field, temporally sinusoidal stimuli.

(D) Average images from the isl3/ath5:GCaMP6s and HuC:GCaMP6s lines used to label RGCs and RAs, respectively. Scale bars, 100 mm.

(E) Representative delta F/F responses to all four stimuli from RGCs and RAs. Indicated in each trace is the spectral type from (I).

(F) Full datasets for RGCs and RAs, with intensity reflecting the row-normalized delta F/F, sorted according to clusters depicted in Figure 2. White lines indicate

first stimulus peak.

(G) Registered and interpolated anatomical maps of the regions of interest (ROIs), colored by preferred stimulus (see STAR Methods). Scale bars, 100 mm.

(H) Calculated gains for each cone from each ROI in RGCs and RAs.

(I) Spectral types obtained from categorizing the cone gains from both RGCs and RAs (bottom) and their counts (top).

(legend continued on next page)
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although almost all patterns appeared to show more heteroge-

neity than suggested from the rather homogeneous cone layout

in the dorsal retina (Figure 1K).6,8,14,30

Chromatic responses cluster functionally and
anatomically
Given the divergence of the spatial activation patterns elicited by

each stimulus, we next tested whether the different calcium re-

sponses we observed (Figures 1F, S2A, and S2B) also displayed

specific anatomical patterns (Figures 2A and 2B). To this end, we

clustered these responses based on their spectro-temporal fea-

tures. This analysis yielded 11 RGC clusters and 19 RA clusters,

which displayed varying patterns of region specificity and spec-

tro-temporal waveforms across fish (Figures 2C, 2D, and S2D–

S2I). In RGCs, responses that followed the temporal structure

of the stimulus were more common, whereas in RAs many clus-

ters displayed sustained responses (e.g., cluster RA3) or re-

sponses that evolved over time (e.g., cluster RA17). In both pop-

ulations, there was a dominant cluster that was present in almost

all regions (clusters RGC1 and RA1), and that could be due to the

interaction between our stimulus and the previously described

coarse retinal spectral tuning.27

Does spectral distribution of response types influence local

wavelength processing? To assess this, we used a support vec-

tor machine (SVM) classifier to identify the stimulus. This showed

that all four stimuli were separable across regions but with re-

gion-specific differences in performance, especially for the

green and blue stimuli (Figures 2E and S2J). We corroborated

this via a regression approach, where the clusters from each re-

gion were used to regress the clusters of another (Figure S2C).

This showed, as expected, that AF10, the AF that terminates in

tectum, carries information common to most AFs. Instead, other

AFs showed more specific patterns, as predicted by connectiv-

ity.14 In RAs, all regions performedwell, although cerebellum and

habenula displayed more diverging patterns, even compared to

tectum. Overall, RAs performed better at spectral classification

than RGCs—especially in middle wavelengths that have more

overlap—whereas RGCs performed better at intensity classifica-

tion (Figure S2K). Hence, chromatic information is widespread in

the larval brain, but with regional differences in the particular

response types available.

Chromatic stimuli are better separated in tectum than in
AF10
AF10 and tectum represent subsequent stages in the visual

pathway,15 but tectum outperforms AF10 in stimulus separation

(Figure 2E), even though there is chromatic processing already in

the retina.8,27 Thus, tectum does not merely relay AF10 signals

but contributes to chromatic processing. We therefore set out

to uncover the nature of these computations (Figures 3A and

3B). First, we quantified the number of responsive ROIs for

each combination of stimuli, given more wavelength-selective

ROIs could result in better wavelength separation (Figure 3C).
(J) Antero-posterior (left) and dorso-ventral (right) normalized calcium response pr

for difference between the region of the profile covered by the line and the corresp

(K) Spatial similarity of the response patterns elicited by the four stimuli. A star

Wilcoxon signed rank, p < 0.05. n = 6 animals and 3,595 ROIs for the RGC data

See also Figure S1.
Weobserved no significant difference between AF10 and tectum

at this level, nor when we utilized the cone contributions instead

(Figures S3C and S3D). Because sensory processing is often

associated with enhanced decorrelation,16 we next quantified

the decorrelation between the responses elicited by each pair

of stimuli in both areas (Figure 3D). Decorrelation in tectum

was higher than in AF10, but only by a small margin. It is note-

worthy that limiting this analysis to the clusters in each area

widened this decorrelation difference (Figure 3E).

But how does decorrelation translate into processing? We

used principal-component analysis (PCA) to visualize the popu-

lation-level activity time course during each stimulus, and

aligned spaces across animals using canonical component anal-

ysis (CCA31; Figures 3F, S3E, and S3F). This showed that,

whereas in AF10 there is only onemain separation axis, in tectum

the trajectories separate in all three dimensions, suggesting a

higher-dimensional representation of chromatic stimuli. This

was corroborated by calculating the normalized distances be-

tween the stimulus trajectories in PC space (Figure 3G). There-

fore, tectum shows signatures of higher dimensionality, which

supports the better stimulus separation in comparison to AF10.

Based on the clear separation of the PC trajectories in tectum,

we hypothesized that, aside from gained dimensionality, this

separation led to amore robust code. We confirmed this by visu-

alizing the performance of an SVM classifier over the time course

of the stimulus presentation (Figures 3H and 3I; see also Figures

S3A and S3B). Indeed, whereas AF10 tends to fluctuate with the

stimulus, the tectal performance was impervious to stimulus in-

tensity changes. This stability could be mediated by several fac-

tors, one of which is how distributed information is across ROIs:

a more distributed code would mean that the population

response is less sensitive to single ROI fluctuations at any given

moment. To assess this, we trained a classifier with increasing

numbers of ROIs (Figure 3J), added by their importance to the

classifier.32 Although tectum outperformed AF10 at every ROI

number, it did so more pronouncedly at low numbers, pointing

to a more distributed code for spectral information in tectum.

Wavelength separation extends to different
spatiotemporal stimulus patterns
RGCs carry combined signals,8 and thus we wondered whether

tectal chromatic processing involves separation of spectral sig-

nals from other submodalities. To answer this, we presented fish

with patterns including local contrast, motion, or fast dynamics,

both in red and UV (tomaximally separate the cones activated by

the stimuli) (Figures 4A and 4B). As with the previous stimulus

set, we observed a large diversity of responses to the stimuli,

both in terms of pattern and wavelength (Figures 4C and S4A–

S4C). Registration into a reference brain confirms this heteroge-

neity, although the AF10 patterns appear more homogeneous

(Figures 4D and 4E). In AF10, only the flash patterns show in-

stances of divergence. Instead, in tectum, the diverging patterns

are more numerous and distributed. How stimulus specific are
ofiles for RGCs (top) and RAs (bottom) for each stimulus. Lines denote p < 0.05

onding region in the profile indicated by the line’s color, Wilcoxon signed rank.

denotes overlap significantly different from monochromatic inter-trial overlap,

; n = 6 animals and 5,717 ROIs for the RA data.
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Figure 2. Chromatic responses cluster functionally and anatomically

(A) We presented four chromatic stimuli and measured responses from a number of brain regions to identify wavelength-sensitive areas.

(B) Anatomical location of the brain regions imaged for the RGC and RA populations. Scale bar, 100 mm.

(C) Relative proportion of each cluster found in each of the brain regions imaged (normalized per brain region, plotted as log base 10).

(D) Average responses for each cluster, for RGCs (left) andRAs (right). Gray numbers indicate ROI numbers. Maps next to each cluster depict the average location

of its ROIs. Gray lines indicate first stimulus peak. Scale bars, 100 mm.

(E) Classification accuracy of an SVM classifier trained to discriminate between the stimuli for each region. Top: RGCs; bottom: RAs. AF, arborization field; R- and

L-: right and left hemisphere; TcN, tectal neuropil region; TcP, tectal periventricular region; Cb, cerebellum; Hb, habenula; Pt, pretectum.

See also Figure S2.
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Figure 3. Chromatic stimuli are better separated in tectum than in AF10

(A) Comparison of the chromatic computations occurring between AF10 and tectum.

(B) Anatomical layout of AF10 (top) and ipsilateral tectum (bottom). Scale bar, 100 mm.

(C) Histogram quantifying the number of ROIs assigned to the top 75th percentile of each stimulus, no stimulus (NR, non-responsive), or multiple stimuli for both

populations. p > 0.05 for all bins tested separately, Wilcoxon signed rank.

(D) Overall decorrelation of the neural activity evoked by each stimulus for both datasets.

(E) Cluster average decorrelation for all pairs of stimuli for AF10 (below diagonal) and tectum (above diagonal). The deltas were evaluated pairwise; p < 0.05,

Wilcoxon rank sum for all squares.

(F) CCA-aligned and averaged PC trajectories over the course of the stimulation period for AF10 and tectum. Line color indicates stimulus, with dot size increasing

over time.

(G) Average pairwise Euclidean distances between the centroids of the point clouds corresponding to each stimulus response in PC space for AF10 and tectum

after alignment. *p < 0.05, Wilcoxon rank sum performed pairwise.

(H) Example SVM-based classification performance over time for AF10 and tectum compared to shuffle. Stimulus is on top.

(I) Success ratio for classification of each stimulus in AF10 compared to tectum. *p < 0.05, Wilcoxon rank sum.

(J) Classification performance for different ROI numbers, with an average of 10 repetitions for both populations and shuffles. * p < 0.05 Wilcoxon rank sum

performed pairwise.

(A–E, H, and I) n = 6 animals and 1,776 ROIs for tectum; n = 6 animals and 2,670 ROIs for AF10.

(F and G) n = 3 animals and 1,604 ROIs for tectum; n = 5 animals and 1,313 ROIs for AF10.

See also Figure S3.
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the ROIs? To address this question, we grouped the responsive

ROIs based on their preferred pattern and wavelength (Figures

4F and S4D). We found multiple types, but the distribution was

broader for tectum than for AF10, supporting the improved de-

correlation we observed.

But does the more distributed tectal code also play a role in

pattern processing? To answer this, we repeated the neuron

addition analysis (Figure 4G). It is noteworthy that, taking all

AF10 responses into account, they outperform tectum but

smaller numbers do not. This further supports the idea of a

distributed code in tectum, whereas the AF10 code seems to

be more local. To further disentangle the intricacies of this

computation, we trained separate classifiers for the pattern or
the spectral component of the stimuli. Whereas the pattern clas-

sifier shows similar accuracy throughout for both populations,

the chromatic classifier follows the results observed in Figure 3.

Hence, there is a clear chromatic processing improvement in

tectum compared to AF10, even in the presence of other modal-

ities, mediated by better pattern decorrelation, stability, and a

more distributed code.

DISCUSSION

In this work, we show how chromatic stimuli are processed in

two successive stages of the larval zebrafish visual pathway.

We found that chromatic information coming from below is
Current Biology 31, 1–9, May 10, 2021 5



Figure 4. Wavelength separation extends to different spatiotemporal patterns

(A) Red or UV stimuli were utilized to assess whether different spatiotemporal patterns affect wavelength processing between AF10 and tectum.

(B) Schematic of the stimuli, combining spatiotemporal patterns with red and UV.

(C) Trial-averaged fluorescence traces. Intensity is row-normalized fluorescence. Traces were sorted via hierarchical clustering for display. White lines show the

first peak of the checkerboard oscillation.

(D) Anatomical interpolated ROI distribution from AF10 (left) and tectum (right), depicted according to the stimulus that elicited the maximum response for that

ROI. Scale bars, 100 mm.

(E) Anatomical similarity matrix for the response patterns elicited by each stimulus. A star denotes overlap significantly different from inter-trial overlap, Wilcoxon

signed rank, p < 0.05.

(F) Breakdown of the spectral/pattern types for both populations. Top: count of ROIs of each type. Bottom: spectral and pattern selectivity for that type.

(G) ROI addition analysis as described for Figure 3J. Left: classifier trained to separate all 6 stimuli. Middle: classifier trained to separate only patterns and

disregard wavelength. Right: classifier trained to separate only wavelength and disregard patterns. *p < 0.05, Wilcoxon rank sum performed pairwise.

n = 4 animals and 1,006 ROIs for AF10; n = 11 animals and 1,134 ROIs for tectum. CK, checkerboard; GR, moving grating; FL, dark flash.

See also Figure S4.
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widely available across the larval brain, even in cerebellum and

habenula, structures not usually associated with chromatic pro-

cessing (33–35; but see Lin and Jesuthasan36 and Dreosti et al.37),
6 Current Biology 31, 1–9, May 10, 2021
whereas it is absent from others, such as AF6 and AF7. When

focusing on AF10 and the optic tectum, we observed that the

chromatic computations are more advanced in tectum, as
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evidenced by improved decoding and better pattern decorrela-

tion and stability. Finally, by comparing the responses to

different behaviorally relevant stimuli,38–41 we confirmed that

tectum utilizes a more distributed neural code than AF10, allow-

ing it to better separate chromatic information from the RGC

inputs.

Recently, Zhou, Bear et al.8 described the spectral properties

of RGC dendrites and somata in the eye of the larval zebrafish.

Our results corroborate their finding of mostly OFF blue weights

and high UV weights in RGCs, and also of simple and complex

color opponencies, including partial matching to the types they

find in the dorsal retina (Figure S1B). Additionally, our results

are also in agreement with recent findings describing the coarse

spectral tuning of the larval eye as RG ON, B OFF, and UV

ON.12,27 Interestingly, Zhou, Bear et al. also describe the pres-

ence of a time code in RGC responses. Due to our imaging pro-

tocol, we are unable to resolve the calcium dynamics at the rates

this time code is observed (although see Figures S1C and S2I),

but in future studies it will be interesting to elucidate the interac-

tion between the slower time component we observe with the

described RGC time code and chromatic processing.

How do chromatic circuits arise in light of our results? Based on

what is known about tectal connectivity,42,43 aside from sensory

inputs, there is also a large amount of intratectal circuitry that

most likely has a pivotal role in the computations we describe.

Neurons with refined chromatic responses could arise by

combining like-tunedRGC terminals. The resulting neuronswould

then have amore stable output than individual RGC terminals, and

their connections to other like tectal neurons would allow the

entire network to improve in decorrelating the chromatic signals,

consistent with the distributed code we observed. Such a circuit

motif has been described for systems like the larval olfactory sys-

tem, where decorrelation is essential for decoupling inputs.16 This

circuit structure would also be compatible with some of the previ-

ously described wavelength-dependent behaviors in the larva,

such as prey capture,9 blue vertical migration,36 UV avoidance,44

and the optomotor response in red-green.45 In agreement with

this, we observed that the broad spatial organization of chromatic

signals deviates beyond the retinotopic expectation, allowing for

development of pathways supporting specific submodalities of

chromatic vision as the ones mentioned above.

Finally, in mammals, and in particular in primates, chromatic

information follows a processing path down the temporal

stream, a succession of cortical areas involved in object recog-

nition. These comprise from V1 to V2 and V4.46,47 In the latter,

one finds neural correlates of more complex aspects, such as

hue. We found no obvious color processing centers in the fish

brain, as spectral responses appear anatomically distributed,

but more research is warranted in uncovering the full color vision

pathway in the larval brain.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Extracted ROIs This paper https://dx.doi.org/10.17632/szj869h34m.1

Experimental models: organisms/strains

Zebrafish: Tg(ath5:Synaptophysin-GCaMP6s,

isl3:Synaptophysin-GCaMP6s)

48,49 and this paper N/A

Zebrafish: Tg(HuC-H2B:GCaMP6s) 50 N/A

Zebrafish: Tg(HuC:GCaMP6s) 51 N/A

Software and algorithms

Custom MATLAB code for data analysis Mathworks, this paper https://www.mathworks.com/,

https://github.com/drguggiana/Guggiana_2021

Custom LabVIEW code for microscope

control and stimulus generation

National Instruments,

this paper

https://www.ni.com/

ImageJ 52 https://imagej.nih.gov/ij/index.html

Cygwin https://www.cygwin.com/ https://www.cygwin.com/

CMTK 53 https://www.nitrc.org/projects/cmtk/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Drago

Guggiana Nilo (drguggiana@neuro.mpg.de) .

Materials availability
This study did not generate new unique reagents.

Data and code availability
Original data have been deposited toMendeley Data: https://dx.doi.org/10.17632/szj869h34m.1 and the code generated is available

on Github at https://github.com/drguggiana/Guggiana_2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish
5-7 days post fertilization (dpf) male and female zebrafish larvae (Danio rerio, Hamilton, 1822, sex not identifiable at this age) were

group bred in a 14:10 light/dark cycle at 28�C in 10 cm dishes. The strains used were 1) Tg(ath5:Synaptophysin-GCaMP6s,

isl3:Synaptophysin-GCaMP6s),48,49 2) Tg(HuC-H2B:GCaMP6s)50 and 3) Tg(HuC:GCaMP6s),51 all in a nac�/� background

(RRID:ZFIN_ZDB-GENO-990423-18). 1) expresses GCaMP6s at the axonal terminals of most RGCs in the larval zebrafish, 2) ex-

presses the same calcium indicator localized to the nuclei of most neurons in the larval brain, and 3) expresses also the same calcium

indicator in the cell body of most neurons across the whole brain. All animal protocols were in accordancewith NIH guidelines and the

Harvard University IACUC.

METHOD DETAILS

Stimulus presentation
The larvae were embedded in 1.8% agarose (UltraPure LowMelting Point Agarose, 16520-100, Invitrogen) in a 5 cm plastic Petri dish

that was then filled with filtered facility water. The stimuli were presented using a custom-built four channel projector. Briefly, two

Lightcrafter projectors (Lightcrafter Evaluation Module, Texas Instruments, Dallas, TX, USA) were stacked on top of each other.

One of them was modified to support projection of LEDs centered at 606, 463 and 397 nm by changing the dichroic mirrors in the

light engine. The second projector was stripped of its dichroic mirrors and the focusing lens was replaced by one supporting UV
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transmission (354330- A, f = 3.1 mm, NA = 0.68, Unmounted Geltech Aspheric Lens, Thorlabs Inc., Newton, NJ, USA). Then, a UV

LED (365nm, Mouser Electronics, Mansfield, TX, USA) was mounted at the entrance port of the former red LED. The two projectors

were coupled using a flat mirror and a dichroic mirror (PF20-03-F01, Thorlabs Inc.) and their projections were aligned underneath the

animal. All stimuli were synthesized by custom software written in LabVIEW (National Instruments, Woburn, MA, USA).

Brain imaging
Two photon calcium imaging was performed using a custom built point scanning two-photon microscope. Briefly, a Mai-Tai femto-

second laser tuned to 950 nmwas passed through a computer controlled half-wave plate and a polarization sensitive prism. After the

prism, the beam was expanded to 5 mm and delivered to the center of a set of scanning galvanometric mirrors (Cambridge Tech-

nology, Cambridge, MA). The objective used was an Olympus 20X XLUMPLFLN-W water immersion objective (Olympus Corpora-

tion, Shinjuku, Tokyo, Japan). Light collected from the sample was relayed to a dichroic mirror that then diverted it to a gateable pho-

tomultiplier tube (H11526, Hamamatsu Photonics K.K.), after bandpassing by a filter (Chroma, Bellows Falls, VT). Additionally in the

path, there was a Hitachi camera focused on the sample plane to allow for rough sample positioning. The microscope control soft-

warewaswritten in LabVIEW (National Instruments,Woburn,MA, USA). The entire systemwas synchronized so that the stimuluswas

presented only during the turn around and fly-back periods of the mirror, at which point the PMT was gated off, therefore preventing

direct exposure from the projector light. This is important, as green light stimulation travels unimpeded through the optical path to the

PMT given the emission wavelength of GCaMP. Images were acquired at�1-2 frames per second, at a resolution of 320x320 pixels.

Each trial was 40 s in length with 10 s of adaptation, 20 s of stimulus presentation and 10 s of rest before the next trial. All stimuli were

shown in triplicate to each animal before moving onto the next z section and repeating the whole process. The stimuli presented for

Figures 1, 2, and 3 were full field, single LED intensity oscillations following a sinusoidal temporal structure (0.25 cycles/s, maximum

intensity swing, Figure S1A). During the rest before and after the stimulus, the intensity of the selected LED was left constant and at

medium level. For Figure 4, the stimuli were of 3 types: a full field checkerboard with either red or UV in half of the squares and black in

the others, oscillating sinusoidally in intensity during the stimulation period and remaining static during the rest periods. The second

stimulus was a moving grating alternating the red or UV light with black stripes. The grating was static during rest periods andmoved

from caudal to nasal during the stimulation period at a spatial frequency of 1cm/cycle and a temporal frequency of 1 cycle/s. The third

stimulus was a full field red or UV light that suddenly reduced in intensity to 0 for a single frame (900 ms) 20 s after the start of the

stimulus, and then returned to its original intensity for another 20 s. For the RA population the targets were the optic tectum, pretec-

tum, habenula, and cerebellum. For the RGC population the targets were AF4-10, although no signals were found in AF7 and 6 as

noted in the text. AF1-3 were not included in our protocol, as their deep location close to the eye was impractical for our microscope

and would have resulted in exceedingly long experiments.

Data pre-processing
The raw data followed a pre-processing pipeline that has been described previously.4 Briefly, the raw imaging data were imported

intoMATLAB (Mathworks, Natick, MA, USA), and all frames within a z section were aligned based on their cross correlation from time

point to time point. Following alignment, theDF/F was calculated for each stimulus repetition, and the repetitions were collapsed into

an average. With the repetitions condensed, all the frames corresponding to one z plane were concatenated and the correlation of

each voxel with its 8 neighbors within a plane was calculated across time. An iterative algorithm was used to find the highest corre-

lation value in each z plane and then start grouping it with its neighbors based on a correlation threshold, up to a size threshold or until

there were no more neighbors fulfilling the correlation threshold. This was repeated for each high correlation value to yield several

groups of voxels. These small groups of voxels, termed ROIs, were then used as the unit to generate each one of the calcium traces

used in the study. To obtain each trace, the traces from each voxel in an ROI were averaged together. Finally, signal to noise ratio per

stimuluswas approximated as described in Baden et al.54 by taking the ratio of the averaged standard deviation across repetitions for

each trace, and the standard deviation of the average. Then traces below the 25th percentile for all stimuli were excluded from the

analysis (around 10% of the traces).

Since the ROI extraction in RGC axonal terminals suffers from resolution constraints, given the size of the terminals, potential ef-

fects of this were probed. In particular, the RA dataset was artificially spatially downsampled to approximately match the resolution of

ROIs in the RGCdataset (downsampling factor of 3), and then ROIs with the same parameters as for the RGCdataset were extracted.

The spectral polarities and response clusters (Figures S1H and S2G) were compared to the original data. Although some important

distortions are observed as expected, the main spectral polarities and clusters are present in both cases.

To account for the differences in dynamics between the axonally expressed GCaMP6s in RGCs compared to the somatically ex-

pressed GCaMP6s in RAs, twomethodologies were attempted. In the first one, the spectral polarities and the clusters obtained from

our RA dataset were compared with a dataset obtained from a nuclearly localized GCaMP6s also expressed in RAs, which should be

even slower than the somatic GCaMP (Figures S1F and S2F). The secondmethod was to obtain the average calcium response of the

RGC and RA data. Then convolution was used to artificially ‘‘delay’’ the RGC data to match the RA data (decay constant 0.2), and

compare spectral polarities and clusters (Figures S1G and S2H). Bothmethods showed that most spectral polarities and clusters are

recovered under the manipulations.

Calculation of cone gains
This first approximation was calculated assuming linearity in the signal summation from different cone types following Equation 1.
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W1C11 W1C21 W1C31 W1C41

W2C12 W2C22 W2C32 W2C42

W3C13 W3C23 W3C33 W3C43

W4C14 W4C24 W4C34 W4C44

3
775 = ðE1E2E3E4Þ (Equation 1)

Namely, that a linear combination of the contributions from each cone type (Cij), weighted by constant factors considering the cone

and LED spectra (Wi), is able to explain the observed responses (Ei) as a function of LED intensity (Ii). To perform this analysis, the

Fourier transform of the traces was extracted to obtain the power at the frequency of stimulation (0.125 Hz). This power was used

as the value for the response to each LED. Then, an interaction matrix was constructed, containing the expected excitation of

each cone type based on the cone spectra, the LED spectra and the power of the LED. The key element is that, for each stimulus,

each LED is turned on on its own, and hence the entire relationship reduces to a four-equation, four-unknown system that can be

solved exactly (Equation 2). This yielded a set of cone ’’gains’’ for each trace.

I1W1C11 =E1

I2W2C22 =E2

I3W3C33 =E3

I4W4C44 =E4

(Equation 2)
Gain pattern classification
For identifying the color input patterns into the ROIs evaluated in this study, the cone gain patterns were simplified analogous to the

procedure described in Zhou, Bear et al.8 Namely, the gains within the lowest percentile of average response (10th in our case) were

set to 0, and then any gain with a positive value was assigned a 1 and every gain with a negative value was assigned a�1. Then, the

unique patterns present in the data were identified and their occurrences counted. For plotting, the same color convention as

described in the reference above was used, namely, black signifies OFF, white signifies 0 and any given color signifies ON. For

the comparison data in Figure S1C, the publicly available dataset from Zhou, Bear et al. was downloaded, and only the dorsal retina

data were selected (between 1 and 3.5 in the horizontal axis of the unfolded retina). Finally, the processing steps described in the

reference were followed to obtain the RGC types.

Registration
The registration procedure was a modification from the one described in Randlett et al.28 Briefly, the average stacks of images for

each animal and experiment were Gaussian blurred and converted to nrrd format, including the metadata for pixel size, and oriented

the same as the reference brain (nasal up, all using ImageJ52). Then, the software CMTK (Computational Morphometry Toolkit, http://

nitrc.org/projects/cmtk 53) was utilized to register them in three dimensions to a reference brain, which varied depending on the data-

set. The reference brain was cut so as to better match the imaged volume, and hence facilitate the registration process. For the regis-

tration itself we used themunger wrapper for CMTKwith the following command line parameters: -a -r 01 -l a -v -T 8 -X 52 -C 4 -G 5 -A

‘–accuracy 0.4’ for the isl2 reference brain and (isl3+ath5)::synaptophysin-GCaMP6s data, and -a -r 01 -l a -v -T 8 -X 52 -C 8 -G 20 -A

‘–accuracy 0.4’ for the HuC reference brain and corresponding HuC::GCaMP6s and HuC::H2B-GCaMP6s data. Once registered, the

affinematrix was loaded intoMATLAB and the registration parameters were applied to the raw calcium data. These coordinates were

translated from the cut reference brains to the original, full-size reference brains, so as to make them compatible with the full Z Brain

Atlas. To produce the maps displayed in the manuscript, after reformatting of the ROIs, the average across the stimulation period for

each ROI was calculated. Then, the 75th percentile across all ROIs for each stimulus was calculated, and only the ROIs above this

threshold were kept. After that, the signal from all ROIs that crossed the threshold was added in space and was superimposed on the

reference brain stack after normalization of both. Finally, to generate the display maps in Figures 1G, 2D, and 4D, the maximum in-

tensity projection in z was calculated. For the statistical comparison in Figures 1J and S1D, each maximally projected profile was

divided in 5 sections, and the corresponding sections were compared across stimuli.

Similarity index
To obtain a measure of the overlap between the anatomical location of the responding ROIs for each stimulus, the ROIs were thresh-

olded based on the top 75th percentile of response. Then, a Gaussian blurring filter was applied to the position of each remaining ROI

to account for the inaccuracies in registration, and next the overlap between the ROI sets from each stimulus (when positioned in the

reference brain on a trial by trial basis) was calculated. The overlapwas quantified as the number of voxels that coincided between the

ROIs from each stimulus, without taking intensity into account as this is accounted for by the percentile threshold. To normalize

the cross stimulus overlap, the overlap between single trials of the same stimuluswas calculated, and then the cross-stimulus overlap

was divided by the average of the within stimulus overlap for the pair of stimuli in question, thus resulting in a similarity index that is

then plotted in Figures 1K and 4E for their respective datasets.

Dimensionality reduction and clustering
Given the high dimensionality of the data, the traces were processed using the method described in Baden et al.54 Sparse principal

component analysis (via the SpaSMMATLAB package by Sjöstrand et al.55) was used to reduce the dimensionality of each trace. In
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particular, 4 sPCs were used per stimulus, each one with 10 active bins. To find the ideal number of clusters, the analysis was per-

formed with several cluster numbers and then the one with the minimum Bayesian Information Criterion value was selected. This cri-

terion balances the increase in fit from a stronger model with a penalty to the complexity of the model. The entire process was per-

formed using the Expectation Maximization algorithm in MATLAB to fit a Gaussian Mixture Model to the data. Finally, clusters with a

correlation higher than 0.8 were merged due to their similarity.

UMAP
Uniform Manifold Approximation and Projection analysis was performed on the stimulus period of the neural data at the population

level. This was done separately for the AF10-Tectum 4 color dataset and AF10-Tectum 2 color dataset. We used the implementation

for MATLABwritten byMeehan et al.56 The calcium data were projected into PCA space using the sparse principal components used

for clustering, normalized, and then processed with the UMAP software. Finally, the 75th percentile of the responses was calculated,

and the ROIs were colored based on this number per stimulus to generate Figures S3D and S4D.

SVM color and intensity classification
To perform the Support Vector Machine classification, the data were supplied to the fitcecoc function in MATLAB, which trains a se-

ries of binary SVM classifiers to perform multi-class classification. The structure of the binary classifiers is a one-versus-all arrange-

ment, where each binary classifier is trained to separate one category from all the rest (which comprise a single ‘‘negative’’ category

together). Then the points that score the highest for a given category are assigned to that one. The classifier for Figures 2E and S2J

was trained to separate between the four sinusoidal stimuli (i.e., four categories) on a per region basis. One classifier was trained per

fish, using only the stimulus period binned to four bins and 5-fold cross validation. The MATLAB function kfoldpredict was used to

obtain the performance for classifying the left out samples in each separate classifier and these were averaged to obtain the clas-

sification per fish. Performance of the classifier was assessed as the average percentage of the traces across the diagonal of the

confusion matrix (diagram comparing the delivered versus predicted stimulus), either on a per row basis (per stimulus performance)

or averaging the whole diagonal (overall performance). The performances of all fish were then averaged to obtain an overall perfor-

mance, and the whole process was repeated ten times. The control classification used the same process, but the labels for the four

stimuli were pseudorandomized. For the intensity classifier in Figure S2K, we utilized the same procedure outlined above, but instead

of using one label per stimulus, we used five levels per stimulus, one for each of the intensity levels of the LED during that stimulus.

The classifiers in Figures S1F–S1H (bottom) were calculated as for Figure 2E, but compared the RA data to either the H2B (Fig-

ure S1F), the delayed RGC data (Figure S1G) or the spatially downsampled RA data (Figure S1H). All classifiers were trained using

random subsampling to match ROI numbers.

ROI addition analysis
The ROIs for a given dataset and fish were ranked based on their contribution to the classifier. In particular, an importance index was

calculated as defined in Stefanini et al.32 Briefly, since the multiclass classifier relies on a series of binary classifiers, to assess the

relevance of an individual ROI in the overall classification, the absolute values of the weights are calculated and then averaged across

binary classifiers and across folds. This index was used to train classifiers starting with the weakest ROIs and progressively training

classifiers with more ROIs in ascending order of relevance. The goal is to determine how distributed or local the neural code is based

on the shape of the curve, and how it compares between neural populations. This cycle was repeated 10 times for each classifier. This

analysis was utilized to generate Figures 3J and 4G.

Success ratio
To quantify the reliability of the classifier over time while taking into account its high performance, a success ratio was calculated as

follows. The subtraction of the correctly classified frames and the incorrect oneswas divided by the total number of frames. This value

was calculated for every classifier separately and averaged for display in Figure 3I.

Cluster to cluster regression
As an alternative way to assess the similarity between the responses in each region, the average of each cluster per region was calcu-

lated, and then cross-validated linear regression was used to fit the responses of one region with another. This was done for all the

possible pairings of regions. Then, for each pair, the losses from the fits to each cluster were averaged and saved in a matrix. Finally,

the results were plotted in Figure S2C as one minus the average loss, since we wanted a measure of similarity.

Correlation analysis
Four different types of (de)correlation were calculated, all using Pearson’s correlation coefficient and only the stimulus period

(excluding pre- and post-stimulus), except for Figures S3A and S3B that used the whole period. For calculation of the decorrelation

matrices in Figure 3D, the datasets were reshaped so that all of the responses for a given stimulus are concatenated across neurons,

and separated by stimulus. Then a correlation matrix was calculated based on this input so that the result had the dimensions of the

number of stimuli. Decorrelation was calculated as one minus the absolute value of the correlation, since the quantity of interest is

decorrelation, not the positive and negative nature of the correlations. This was done with both the four sinusoidal stimuli dataset and

the red/UV pattern dataset. To calculate the decorrelations shown in Figure 3E, the cluster averages from the responses for the
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different stimuli within a brain region (AF10 or tectum) were correlated against each other, yielding a pairwise correlation matrix of

color comparisons for that brain region. Decorrelation was calculated as described for Figure 3D. For calculation of the stimulus-

to-stimulus correlation over time in Figures S3A and S3B, the traces were concatenated across neurons, but they were kept separate

for each time point. Then, the traces for each stimulus were correlated with each other at each time point, yielding the trajectories

displayed. All of the above computations were performed individually per animal and then averaged. For calculation of the fish to

fish correlations, the data from all the animals in the tectal dataset was clustered together, then the traces from each animal were

averaged based on their belonging to a cluster. These averages were then correlated across animals and an average correlation

per individual was calculated and displayed in Figure S2D.

PCA-CCA
Principal Component Analysis was performed separately for each animal, using the neural response data for the stimulus period only.

As outlined in Gallego et al.,31 although PCA realigns the space the data are in uniquely for that data (i.e., set of neurons/axonal ter-

minals), if the underlying variance-driving dimensions are similar, or in other words if the sets of responses from different animals lie in

the same manifold of activity, one can use Canonical Correlation Analysis to find a common subspace that maximizes the alignment

between the PCA reconstructions from different sets of ROIs. Therefore this technique was utilized to align the PCA decompositions

of the stimulus responses for the AF10 and tectum from different animals. Only the animals that had at least three dimensions con-

taining 50% (4-color stimulus set) or 80% (2-color stimulus set) of the variance or higher were considered (3 animals for the AF10

population and 5 animals for the tectal population). These trajectories were then averaged to generate the displays shown in Fig-

ure 3F. These aligned trajectories were also used to compute the results in Figure 3G.

Convolution of chromatic kernels
The dataset from Zhou, Bear et al. was downloaded from the published repository and the chromatic kernels for each ROI were ex-

tracted using the provided code. These kernels were then convolved with the waveforms representing the stimuli used in this study

after matching time bases. This produced a set of traces that was processed using the pipeline developed in this study to obtain

spectral types and clusters. The spectral types were compared with the types reported in the Zhou, Bear et al. study (Figure

S1C), and the clusters were compared to the ones obtained from using the Gaussian Mixture Model produced in this study, but

the kernel-derived traces (Figure S2I).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed inMATLAB. For all quantifications non-parametric statistical tests were utilized: either theWil-

coxon Rank Sum, Wilcoxon Signed Rank or permutation tests as indicated in the main text or figure legends. The significance level

was defined as 0.05 for all tests. The center measures utilized weremean andmedian (when appropriate) and the dispersionmeasure

was the standard error of the mean. ‘‘n’’ is defined as the number of larvae or the number of ROIs, with clear indication of which of the

two it corresponds to in the text and figures throughout the manuscript. No methods were utilized to determine whether the data met

the assumptions of the statistical approach, as no parametric methods were used. For Figures 1J, 1K, 3E, 3G, 4E, and S1D, we cor-

rected for multiple comparisons across the different stimuli (6 possible comparisons) using the Bonferroni method to adjust the

p value accordingly. All other tests were performed pairwise once.
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