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SUMMARY

Discoveries in biological neural networks (BNNs)
shaped artificial neural networks (ANNs) and compu-
tational parallels between ANNs and BNNs have
recently been discovered. However, it is unclear to
what extent discoveries in ANNs can give insight
into BNN function. Here, we designed and trained an
ANN to perform heat gradient navigation and found
striking similarities in computation andheat represen-
tation toaknownzebrafishBNN.This includedshared
ON- and OFF-type representations of absolute tem-
perature and rates of change. Importantly, ANN func-
tion critically relied on zebrafish-like units.We further-
more used the accessibility of the ANN to discover
a new temperature-responsive cell type in the zebra-
fish cerebellum. Finally, constraining the ANN by the
C. elegans motor repertoire retuned sensory repre-
sentations indicating that our approach generalizes.
Together, these results emphasize convergence of
ANNs and BNNs on stereotypical representations
and that ANNs form a powerful tool to understand
their biological counterparts.

INTRODUCTION

Neural network models such as the perceptron (Rosenblatt,

1962) and parallel distributed processing models (Rumelhart

et al., 1987) have been used to derive potential implementations

of cognitive processes, such as word perception (McClelland

and Rumelhart, 1981; Rumelhart andMcClelland, 1982) or atten-

tional control (Cohen et al., 1990). These models demonstrated

how complex computations could emerge from networks of sim-

ple units suggesting that cognitive processes could be implicitly

realized in connectivity weights rather than relying on a diversity

of computational units. Indeed, artificial neural networks (ANNs)

are increasingly successful in solving tasks long considered hall-

marks of cognition in biological neural networks (BNNs). This in-

cludes visual discrimination tasks, playing chess and Go, as well
Neuro
as spatial navigation (Banino et al., 2018; Cueva and Wei, 2018;

Krizhevsky et al., 2012; Logothetis and Sheinberg, 1996; Moser

et al., 2008; Silver et al., 2016; Trullier et al., 1997).

While ANNdesign principles have been inspired by discoveries

in BNNs (Hassabis et al., 2017), it is controversial whether both

network types utilize the same fundamental principles and hence

to what extent ANNs can serve as models of animal cognition

(Lake et al., 2017). However, if representations and algorithms

are shared between BNNs and ANNs, then ANN models could

be used to guide the analysis of large-scale biological datasets

that are becoming prevalent in modern neuroscience (Engert,

2014). And indeed, studies comparing visual processing with im-

age classification ANNs (Khaligh-Razavi and Kriegeskorte, 2014;

Yamins and DiCarlo, 2016) as wells as studies on networks

performing spatial navigation (Banino et al., 2018; Cueva and

Wei, 2018) uncovered parallels in representation between ANNs

and BNNs.

We recently used whole-brain calcium imaging and modeling

to characterize how larval zebrafish process temperature infor-

mation to generate behavioral output underlying heat gradient

navigation (Haesemeyer et al., 2018). This uncovered critical

neural temperature response types in the larval zebrafish hind-

brain that broadly fall into two classes, ON and OFF cells that

represent changes with opposing sign. Within these classes,

a set of neurons reports temperature levels, while another set

encodes the rate of change. Since larval zebrafish readily

navigate thermal gradients (Gau et al., 2013; Haesemeyer

et al., 2015), we now generated and trained deep convolutional

neural networks to solve a heat gradient navigation task using a

larval zebrafish behavioral repertoire. This approach allowed us

to compare stimulus representation and processing in biolog-

ical and artificial networks that solve the same behavioral task

using our rich biological dataset. We found that these behav-

ioral constraints led to striking similarities in temperature pro-

cessing and representation in the ANN with the zebrafish

biological circuits. Namely, the model parallels temperature

representation in ON and OFF-type units as well as ANN units

showing sustained and adapting responses, effectively encod-

ing both temperature levels and rates of change. Importantly,

ANN performance critically relied on units representing temper-

ature in a fish-like manner, while other nodes were dispensable

for network function.
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Figure 1. A Convolutional Network for Gradient Navigation

(A) Location of temperature modulated neurons (blue) in the zebrafish brain and sensory trigeminal ganglia. Temperature modulated neurons in a hindbrain

processing area are in green.

(B) Structure of the convolutional network for zebrafish temperature prediction. Curves on top depict example network input of the training dataset. Conv,

convolutional layer; ReLu, network uses rectifying linear units; Drop, dropout during training.

(C) Schematic of the network task. Given temperature and movement history in a heat gradient, the network predicts the resting temperature after different

behavior selections (stay, move straight, turn left, or turn right).

(D) Log of the squared error in temperature predictions on a test dataset after the indicated number of training steps (dashed vertical lines demarcate training

epochs).

(E) Evolutionary algorithm to learn p(Swim) weights (left panel) and progression of heat gradient navigation error across generations (right panel). Error bars are

bootstrap SE across 20 evolved networks. Generation 7 in gray and last generation in blue for comparison with (F) and (G).

(F) For fully trained predictive network in generation 0 (orange), evolved generation 7 (gray) and network after completed evolution (blue) the average swim

frequency by temperature in the gradient.

(legend continued on next page)
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We next used the accessibility of the ANN to uncover new fea-

tures of the zebrafish BNN. This allowed identification of a novel

neuronal response type in the zebrafish brain that was predicted

by the ANN but escaped detection in previous calcium imaging

experiments. Finally, our approach generalizes since training

the sameANN constrained by theC. elegansmotor repertoire re-

sulted in distinct neural representations, indicating that the

behavioral means of attaining a goal can influence sensory

representations.

These results indicate that behavioral constraints can lead

to convergence on stereotypical stimulus representations in

ANNs and BNNs, and they demonstrate the utility of ANNs to

gain insight into processing in biological networks.

RESULTS

ANN Models for Heat Gradient Navigation
We sought comparing temperature processing in zebrafish with

that of ANNs that share the same behavioral goal, namely, heat

gradient navigation. We designed two convolutional neural

networks with rectifying linear units; the first explicitly predicts

the consequences of behaviors within a gradient (Figures 1A–

1C), while the other is a reinforcement learning model enacting

a behavioral policy (Figure S1B). Four seconds of sensory and

behavioral history experienced during virtual gradient navigation

served as inputs to the networks since this timescale matches

convolutional timescales in a zebrafish circuit model (Haese-

meyer et al., 2018). We, however, did not match ANN connec-

tivity to zebrafish circuitry to avoid constraining network repre-

sentations by anatomy, but instead limit constraints as much

as possible to the behavioral goal and the available motor

repertoire.

Previously, we observed heat-responsive neurons encoding

the rate and direction of temperature change in the larval zebra-

fish hindbrain and that therefore allow for a simple form of

prediction (Haesemeyer et al., 2018). Inspired by this finding,

we designed our first network to predict the temperature

reached after enacting one of four zebrafish behavioral ele-

ments: stay in place, swim straight, turn left, or turn right (Fig-

ure 1B). Importantly, this design choice is biologically plausible

given the ubiquitous importance of predictive forward models

in decision making across animal phyla (Ahrens et al., 2012;

Mehta and Schaal, 2002; Wolpert and Miall, 1996; Mischiati

et al., 2015; Portugues and Engert, 2011).

We subsequently trained this predictive ANN using backpro-

pagation on training data that were generated from a random

walk through a radial heat gradient by drawing swims from distri-

butions observed during zebrafish heat gradient navigation

(Haesemeyer et al., 2015). We used drop-out (Srivastava et al.,
(G) Radial heat gradient occupancy of naive (black), trained (orange), and evolve

(H–H0 0) Example trajectory for 30 min of navigation in a circular gradient for larval z

(I) Average turn angles of zebrafish or indicated networks when the last swim bo

relative to the same direction in a non-gradient condition. **Wilcoxon test across n

p > 0.7: Wilcoxon test across n = 20 networks, p = 0.7938.

(J) Plot of turn coherence for larval zebrafish (blue), predictive ANN (gray), and r

cessive turns, the probability of turning into the same direction as turn 0 is plotte

Shading in all panels indicates bootstrap SE across 25 fish or 20 networks, resp
2014) during training to mimic redundancy and noise generally

observed in BNNs. Comparing hidden layer sizes (256, 512, or

1,024 units per layer), performance on a test dataset saturated

with 512 hidden units per layer (Figure 1D). We therefore chose

this size for our ANN, but we did not fully explore the architectural

space of convolutional ANNs, and it could therefore be that

much simpler architectures solve the task just as efficiently.

Trained networks successfully predicted temperatures reached

after typical swims with average errors <0.1�C. To use this pre-

diction for gradient navigation, we implemented a behavioral

rule that favors those actions that bring the network closer to a

set target temperature (Figure S1A). Invocation of this rule after

training led to efficient gradient navigation with an average dis-

tance from the target temperature of 2.4�C (SD 0.6�C) compared

to an average distance of 4.6�C (SD 0.4�C) in naive networks.

While larval zebrafish swim in discrete bouts occurring on

average at a frequency of 1 Hz, they modulate swim frequency

by temperature (Haesemeyer et al., 2015), which could be a use-

ful feature in the context of gradient navigation. We therefore

extended the network with amodule controlling swim probability

independent of the already trained predictive function (Figure 1B;

p(Swim)). To accomplish this task, the p(Swim) module uses a

set of weights to transform the output of the temperature pro-

cessing branch of the network into a swim probability similar to

larval zebrafish where temperature-responsive hindbrain neu-

rons control swim probability (Haesemeyer et al., 2018). We

trained these weights using an evolutionary algorithm. Such

algorithms can efficiently minimize empirical costs such as

heat gradient navigation errors without needing an explicitly

defined cost function as required for backpropagation. This

approach led to convergence on a specific set of weights for

each of 20 trained networks within 50 generations (Figure 1E;

Figures S1C–S1E). Importantly, these weights led to increases

in swim frequency as temperature departs from preferred values

(Figure 1F), which is also observed in larval zebrafish (Gau

et al., 2013; Haesemeyer et al., 2015; Prober et al., 2008). This

enhanced navigation performance of the network (Figure 1G)

reducing the average distance to the preferred temperature

from 2.4�C (SD 0.6�C) to 1.7�C (SD 0.6�C).
As an alternative model, we designed an ANN that directly en-

acts a behavioral policy consisting again of the four behavioral

elements ‘‘stay in place,’’ ‘‘swim straight,’’ ‘‘turn left,’’ or ‘‘turn

right’’ (Figure S1B). We trained this model via a reinforcement

learning strategy that rewarded movements in a virtual heat

gradient based on how they influenced the distance to the target

temperature (see STAR Methods). Such networks learned to

reduce navigational errors within a heat gradient (Figure S1F)

and closely matched the performance of our predictive model

(Figures S1F and S1G).
d (blue) networks. Dashed vertical line at 26�C indicates desired temperature.

ebrafish (H), the predictive ANN (H0), and the reinforcement learning ANN (H0 0).
ut was going toward the preferred temperature (blue bars) or away (red bars)

= 25 fish, p = 0.0027; ***Wilcoxon test across n = 20 networks, p = 8.8573 10�5;

einforcement learning ANN (orange) during heat gradient navigation. For suc-

d. Dashed line indicates chance level.

ectively. See also Figure S1.
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To gain further insight into the behavioral strategy employed

by the trained predictive and reinforcement learning ANN, we

compared gradient navigation behavior in larval zebrafish to

that of the two ANN types (Figures 1H–1H0 0). Larval zebrafish
not onlymodulate their bout frequency based on current temper-

ature but also modulate turning based on temperature changes

experienced during the last swim bout. Specifically, turning is

enhanced when moving up a heat gradient, effectively reorient-

ing larval zebrafish when departing from desired temperatures

(Figure 1I). Interestingly, this strategy is learned by the predictive

network but absent in the reinforcement learning network (Fig-

ure 1I). The reinforcement learning network instead learned a

different strategy becoming either left or right biased (cf. Figures

S1I–S1I0 0) and thereby circling near the target temperature (Fig-

ure 1H0 0). While not biasing turning overall (Figures S1I and

S1I0), both larval zebrafish and the predictive network string

together turns of the same direction within the heat gradient.

Namely, the probability of maintaining direction across following

turns was initially greater than chance but decayed back to

chance level in zebrafish and the predictive ANN, while no

such decay was observed for the reinforcement learning ANN

(Figure 1J). Such turn coherence has been reported for zebrafish

spontaneous behavior as well (Dunn et al., 2016), and within a

gradient it likely allows for persistent reorientation without an

overall turn bias. We had previously presented time varying

heat stimuli to larval zebrafish and now compared behavior gen-

eration in response to these stimuli between zebrafish and our

predictive ANN. While rates of swimming in response to these

stimuli only correlatedwith a Pearson coefficient of 0.44 between

zebrafish and the ANN (Figure S1J), both zebrafish and the ANN

increased turning during the rising phase of the stimulus

compared to the falling phase (Figure S1K). This argues that

also for faster stimulus timescales zebrafish and the predictive

ANN generate comparable behavior.

In summary, we designed and trained ANNs to navigate a heat

gradient using both a supervised and a reinforcement learning

strategy. Behavioral comparisons suggest that a network de-

signed to predict the consequences of movements within a heat

gradient mimics important elements of the behavioral strategy

displayed by zebrafish when navigating temperature gradients.

Representation in the ANN Parallels the Zebrafish Brain
We next sought to compare temperature representation be-

tween the ANN and the zebrafish BNN, which contains a critical

set of temperature encoding cells within the hindbrain. These

consist of ON and OFF-type cells sensitive to temperature levels

on the one hand (named ‘‘Slow ON’’ and ‘‘Slow OFF’’) and

changes in temperature on the other (named ‘‘Fast ON’’ and

‘‘Fast OFF’’ cells) (Haesemeyer et al., 2018). Spectral clustering

across units revealed a very similar representation in the tem-

perature navigation ANN (Figures S2A and S2B). Correlation

analysis between ANN response types and zebrafish cell types

revealed clear response similarities, with a corresponding cell

type within the ANN for each zebrafish cell type with correlations

r > 0.6 (Figure 2A). Comparing responses of the matching types

revealed that indeed two mimicked Fast ON and Slow ON activ-

ity found in the larval zebrafish hindbrain (Figure 2B), while

another two paralleled Fast OFF and Slow OFF activity (Fig-
1126 Neuron 103, 1123–1134, September 25, 2019
ure 2C). This similarity in stimulus encoding highlights conver-

gence in representation and information processing between

larval zebrafish and the ANN.

Using a linear model relating ANN units to calcium activity in

every zebrafish neuron (Yamins et al., 2014; see STAR Methods)

revealed a striking overlap between originally identified zebrafish

heat cells across the brain (Figure S2C, left) and those cells that

were well predicted by ANN activity (Figure S2C, right). Impor-

tantly, the overlap is much larger than expected by chance

(Figure S2C0). Overall the ANN correspondence recovered

31% of all heat encoding cells in the zebrafish brain. This recov-

ery is expected given trial-to-trial variability in heat cell calcium

responses (Haesemeyer et al., 2018).

Encouraged by these similarities, we tried to use other prom-

inent response types found in the ANN to identify heat process-

ing cells in the larval zebrafish brain that may have been missed

by previous clustering approaches. In particular, the ANN con-

tained two abundant response types that were quite different

from cell types previously described in zebrafish: a group of units

responding to both stimulus on- and off-set (Figure S2D) as well

as a type that we termed ‘‘integrating OFF’’ as it was most active

at low temperatures and integrated over successive temperature

decreases during the sine period of the stimulus (Figure 2D). We

used these novel cell types as regressors (Miri et al., 2011) to

search the larval zebrafish brain data for cells with highly corre-

lated responses. While we couldn’t identify cells that properly

matched the response properties of the ON-OFF type (Fig-

ure S2D), there was a group of cells with activity closely resem-

bling the ‘‘integrating OFF’’ type (Figure 2D). Importantly, these

cells clustered spatially in the larval zebrafish brain, where

most of them were located in a tight band in the rostro-dorsal

cerebellum (Figure 2D0, arrow). This anatomical clustering

strongly supports the idea that these cells indeed form a bona-

fide heat-responsive cell type.

By design the ANN connectivity was not matched to the BNN

of larval zebrafish. In particular, temporal convolution occurs at

both the sensory neuron level as well as in the hindbrain in larval

zebrafish (Haesemeyer et al., 2018), while our ANN only has one

convolutional layer. Accordingly, all ANN response types already

arise at the first layer of the network, while their abundance

changes between layers (Figure S2B). Nonetheless, analysis of

connectivity weights between the hidden layers in the tempera-

ture branch of the network revealed that zebrafish-like types

receive on average stronger inputs from other zebrafish-like

types than from non-fish types (Figure 2E). This suggests that ze-

brafish-like response types form a sub-network within the ANN.

Comparing stimulus representations between the reinforce-

ment learning network and larval zebrafish following the same

correlation strategy revealed matching representations as well

(Figure S2E). However, this network lacked a response type

with a correlation >0.6 to Fast OFF neurons (Figure S2E). In

fact, the unit type best correlated to zebrafish Fast OFF cells

was equally well correlated to zebrafish Slow ON cells.

The observed representations could be a general solution to

navigational tasks that use time varying inputs, or they could

be specific to spatial gradient stimuli. To disambiguate these hy-

potheses, we designed a network with a behavioral goal akin to

phototaxis (Chen and Engert, 2014; Huang et al., 2013; Wolf
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Figure 2. The Network Learns a Zebrafish-

like Neural Representation

(A) Activity correlation between previously

described zebrafish hindbrain heat response types

and all identified response types in the predictive

ANN given the same stimulus. The naming refers

to the names given to the cell types in Haesemeyer

et al. (2018). Circles indicate matched types with a

Pearson correlation > 0.6.

(B)Responsesof fish-likeONcell typesassignedby

the correlation in (A). Top panel: network responses

of adapting ‘‘Fast ON’’ cells (red) and non-adapting

‘‘Slow ON’’ cells (orange) in the network. Bottom

panel shows corresponding zebrafish calcium re-

sponses for comparison. Stimulus is depicted in

gray on top for reference; vertical dashed lines

indicate example rising and falling phase starts.

(C) Responses of fish-like OFF cell types assigned

by the correlation in (A). Top panel: network re-

sponses of adapting ‘‘Fast OFF’’ cells (green) and

non-adapting ‘‘Slow OFF’’ cells (blue) in the

network. Bottom panel shows corresponding

zebrafish calcium responses for comparison.

(D) ‘‘Integrating OFF cell’’ type identified in the

network (purple, top panel) was used as a re-

gressor to identify the same, previously unidenti-

fied, cell type in zebrafish data by probing the

dataset for cells that have calcium responses with

a correlation r > 0.6 to the regressor (bottom

panel, shading indicates bootstrap SE across 146

zebrafish neurons).

(D0) The newly identified zebrafish cells cluster

spatially, especially in a tight rostral band of the

cerebellum (arrow). Top panel: dorsal view of the

brain (anterior left, left side bottom). Bottom panel:

side view of the brain, anterior left, dorsal top).

Scale bars, 100 mm.

(E) Connectivity weights between layer 1 neuron

types in the temperature branch (columns) feeding

into the indicated types of layer 2 neurons (rows).

Fish-like types are indicated by corresponding

colored bars, and remaining non-fish-like clusters

are indicated by thinner gray bars on the right side.

Error bars indicate SD.

Shading indicates bootstrap SE across 20 net-

works in all panels. See also Figures S2 and S3.
et al., 2017). This network variant receives as input a history of

angles to a light source and has the task of predicting its angular

position after the same swim types used in the thermotaxis

network (Figures S3A and S3B). We found that this ANN effi-

ciently learned to fixate a light source (Figures S3C and S3D).

However, comparing cell responses between the thermotaxis

and phototaxis networks revealed a much simpler stimulus rep-

resentation in the latter (Figure S3E). This argues that the

observed stimulus representations are not emergent features

of networks trained to perform navigation but rather depend on

the specific task at hand.

White Noise Stimuli Reveal Shared Processing
Strategies
Previously, we characterized the computations underlying

behavior generation during heat perception in larval zebrafish
using white noise temperature stimuli (Haesemeyer et al.,

2015). This approach allowed us to derive ‘‘filter kernels’’ that

describe how larval zebrafish integrate temperature information

to generate swim bouts (inset Figure 3A). These filter kernels re-

vealed that larval zebrafish integrate temperature information for

500 ms to decide on the next swim and that they extract a deriv-

ative of the temperature stimulus as reflected in the 0-crossing of

the filter (Figure 3A, inset). The filter kernels furthermore indi-

cated that swims were in part controlled by a strong OFF

response just before the start of a bout. For comparison, we

now presented white noise temperature stimuli to the ANN and

computed filter kernels for straight swims and turns (Figure 3A).

These bear striking resemblances to the larval zebrafish filter

kernels. Namely, even though no explicit constraints on integra-

tion timescales were given to the ANN, the filter kernels reveal

that most information is integrated over timescales less than a
Neuron 103, 1123–1134, September 25, 2019 1127
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Figure 3. White Noise Analysis Reveals ANN

Processing

(A) White noise analysis of behavior induced by the

network depicting the average stimulus in the last

second preceding a swim. Straight swim kernel is

orange, and turn kernel is blue. Inset shows ze-

brafish kernels for comparison with straight bout

kernel in orange and turn kernel in blue. Arrowhead

indicates OFF response just before swim start in

zebrafish and networks.

(B–F) During the same white noise stimulation

paradigm used in (A), the behavior-triggered

average activity of the indicated cell types. Orange

lines depict behavior-triggered average activity

before straight swims; blue lines depict before

turns.

(B) Behavior-triggered average activity of ‘‘Fast

ON’’ units.

(C) Behavior-triggered average activity of ‘‘Slow

ON’’ units.

(D) Behavior-triggered average activity of ‘‘Fast

OFF’’ units.

(E) Behavior-triggered average activity of ‘‘Slow

OFF’’ units.

(F) Behavior-triggered average activity of ‘‘Inte-

grating OFF’’ units.

Shading indicates bootstrap SE across 20 net-

works in all panels. See also Figure S4.
second, akin to larval zebrafish integration timescales (Fig-

ure S4A). This is likely the result of the ANN adapting processing

timescales to the average swim frequency used in the training

data, a feature that has previously been suggested in bacterial

chemotaxis (Block et al., 1982). Supporting this idea, a reduction

of training data baseline swim frequency to 0.5 Hz elongates the

filters, while an increase to 2 Hz heightens the filter peaks close

to the swim start (Figure S4B). The ANN furthermore computes

both a derivative and an integral of temperature, and, notably,

behavior is also influenced by a strongOFF response right before

the start of a swim (arrowhead in Figure 3A). These are all hall-

marks of larval zebrafish temperature processing. Furthermore,

as in zebrafish, the OFF response before the swim-start is

more strongly modulated for straight swims than turns (Fig-

ure 3A), a strategy that likely underlies the favoring of straight

swims over turns when temperature approaches cooler, more

favorable conditions (Figure 1I). While there are also differences

in the filter kernels such as a different modulation in peak height

between swims and turns the overall correspondence suggests
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similar processing strategies. As ex-

pected, the swim-triggered averages are

completely unstructured in naive networks

(Figure S4C).

To gain insight into the contribution

of ANN response types to behavior, we

analyzed their behavior-triggered average

activity during white noise stimulation

(Figures 3B–3F). These averages reveal

that Slow-ON and Slow-OFF types mostly

enhance straight swims or turns respec-

tively without affecting the opposing
behavior very much (Figures 3C and 3E). The behavior-triggered

activity of Fast-ON cells appears modulated with very slow

dynamics (Figure 3B) making the role of this response type

harder to interpret. However, as expected from the modulation

of turning behavior (Figure 1I), high activity in Fast-ON units

seems to strongly suppress straight swims (Figure 3B). Fast-

OFF units have the greatest discrimination between straight

swims, which are enhanced by activity in this response type

and turns that are suppressed (Figure 3D). This is consistent

with the observed behavioral modulation based on gradient di-

rection. Integrating OFF cells generally suppress behavior but

do so more strongly for turns than straight swims (Figure 3F).

Overall, the behavior-triggered activity suggests contributions

by both ON and OFF cells, with especially the rate encoding

Fast-OFF cells discriminating turns versus swims. Interestingly,

ON and corresponding OFF types don’t affect behaviors in a

mirror symmetric fashion but seem to transmit different informa-

tion. Likewise, as in larval zebrafish, we observed a clear asym-

metry between encoding in ON and OFF-type cells such that
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Figure 4. Ablations Reveal Importance of Zebrafish-like Cell Types

(A) Effect of random unit ablations on gradient navigation performance as fraction within 1�C of desired temperature. Shown is performance for naive, fully trained

and for random ablations of the indicated fraction of units in the temperature branch for zebrafish networks. Inset depicts location for all ablations.

(B) Occupancy in radial heat gradient for trained zebrafish networks (black) and after ablations of the indicated cell types (colored lines).

(C) Quantification of gradient navigation performance as fraction within 1�C of desired temperature for naive and trained zebrafish networks as well as after

ablations of the indicated cell types identified in larval zebrafish (colored bars) and those types not identified in fish (‘‘Non-fish’’; gray bars). Ablations are ordered

according to severity of phenotype.

(D) Effect on gradient navigation of ablating all types identified in zebrafish (blue line) or all non-fish types (red line). Note that these are non-evolved networks to

allow retraining analysis. Trained performance shown in black for reference. The number of ablated units was matched in both conditions (see STAR Methods).

(E) Log of the squared error in temperature predictions of networks on the test dataset after ablating all fish-like types in the temperature branch when retraining

weights either in the temperature branch (red line) or in the mixed branch (blue line). Inset indicates retraining locations.

(F) Effect of retraining networks after ablating all zebrafish-like neurons. Retraining was limited to either the temperature branch (red line) or themixed branch (blue

line). Solid gray line visualizes trained and dotted gray line visualizes ablated performance.

(G andH) Recovered fraction of individual cell types after retraining the temperature branch (red bars) or after retraining themixed branch (blue bars). Insets depict

retraining locations.

(G) Cell-type fractions in temperature branch.

(H) Cell-type fractions in mixed branch.

Shading and error bars in all panels indicate bootstrap SE across 20 networks.
OFF cells were not the simple inverse of their ON cell counter-

parts (Figures 2B and 2C). Since our ANN used rectifying linear

units that like biological neurons cannot encode negative firing

rates, we wondered whether this constraint caused this asym-

metry. We therefore trained an ANN in which we exchanged

the activation function for the hyperbolic tangent function result-

ing in an encoding that is symmetric around 0 (Figure S4D).

These networks learned to navigate heat gradients just as well

as networks with rectifying linear units (Figures S4E and S4F),

but remarkably they represented heat stimuli in a very different

manner. Namely, OFF units in this network type were the exact

mirror image of ON units (correlation < �0.99 for all pairs), which

resulted in an overall simpler representation (Figures S4G and

S4H). This notion was supported by the fact that the first 4 prin-

cipal components explained 99% of the response variance

across all cells in hyperbolic tangent networks, while 7 principal

components were needed in rectifying linear networks (Fig-
ure S4I). This suggests that the biological constraint of only

transmitting positive neural responses shapes asymmetries in

representations in ON and OFF-type channels and thereby in-

creases required network complexity.

Zebrafish-like Types Form a Critical Core of ANN
Function
After discovering clear parallels in representation and computa-

tion between ANNs and BNNs, we tested the importance of the

common response types for ANN function. As expected for

ANNs, random removal of asmuch as 85%of all units in the tem-

perature processing branch had only a small influence on

gradient navigation performance (Figure 4A). However, specific

deletion of all SlowON or Fast OFF-like cells in the network, con-

trary to Fast ON, Slow OFF, and Integrating OFF deletions, had a

strong effect on temperature navigation (Figures 4B and 4C).

Indeed, the Slow ON and Fast OFF types also have the highest
Neuron 103, 1123–1134, September 25, 2019 1129



predictive power on heat-induced behaviors in the larval zebra-

fish hindbrain (Haesemeyer et al., 2018). Overall, deletion of any

zebrafish-like type in the network had a larger effect on naviga-

tion performance than deleting individual types not found in

larval zebrafish (Figure 4C) indicating a relatively higher impor-

tance of fish-like types. Strikingly, deleting all fish-like types in

the temperature branch of the ANN nearly abolished gradient

navigation, while performance was hardly affected when delet-

ing all non-fish types (Figure 4D). This demonstrates that fish-

like response types are of critical importance for gradient

navigation.

To test whether the network could adjust to the absence of

fish-like representations, we locally retrained the heat-navigation

ANN, restricting updates to either the temperature branch of the

network or the mixed branch that integrates temperature and

movement information. Retraining improved network perfor-

mance in both cases, but retraining the temperature branch led

to considerably better performance compared with retraining

the mixed branch (Figures 4E and 4F). This indicates that, while

the temperature branch still transmits some usable information

after ablation of all fish-like types, the resulting representation

is lacking information required for efficient navigation. To gain

better insight into the consequences of retraining, we analyzed

the distribution of response types in the temperature and mixed

branch in retrained networks. When retraining the temperature

branch, fish-like types emerged at the expense of non-fish types

giving further credence to their importance for temperature pre-

diction and navigation (Figures 4G and 4H). Retraining the mixed

branch, however, failed to re-generate most of the fish-like types

indicating that these cannot be re-synthesized from information

carried by non-fish types (Figure 4H). The only exceptions to this

were Slow-OFF and Integrating-OFF cells, which are the two cell

types that receive fairly strong inputs from non-fish-like types to

begin with (Figure 2E).

Changes in Motor Repertoire Tune Sensory
Representations
To test the influence of the behavioral repertoire on sensory rep-

resentations, we created a network variant using behaviors dis-

played during C. elegans heat gradient navigation (Ryu and

Samuel, 2002). To limit changes to the motor repertoire, this

network had the same structure and task as the original network

(Figures 5A and 5B) but was trained on a random walk through a

heat gradient employing C. elegans behaviors. While this design

choice minimized architectural changes, we note that the result-

ing network failed to approximate the vastly smaller number of

neurons found in C. elegans compared to larval zebrafish.

Just like the zebrafish heat navigation ANN, the C. elegans

ANN learned to predict temperatures (Figure 5C) and hence

was able to effectively navigate a heat gradient (Figure 5D). Nav-

igation performance was in fact better than for the zebrafish ANN

(cf. Figures 1H and 5D), which likely is a consequence of the abil-

ity of trajectory reversals by executing pirouettes.We did not add

an evolutionary algorithm to train changes in crawl frequency or

speed since such behavioral modulation by temperature is not

observed in the worm (Ryu and Samuel, 2002). Comparing tem-

perature responses between the zebrafish and C. elegans ANNs

using principal-component analysis revealed overlapping aswell
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as divergent responses (Figure 5E). Namely, some types show

near identical responses, while other response types are exclu-

sive to one of the two ANNs (Figures S5C–S5I). Overall, there

is a large overlap in response dynamics between the zebrafish

and C. elegans network in spite of vastly different behavioral

timescales. This might indicate that adaptations of processing

to behavioral timescales as observed by white noise analysis

of the zebrafish network (Figure S4B) can be accomplished by

small changes in response dynamics of individual units. Impor-

tantly, we could identify response types that mimic responses

of cells previously described in C. elegans (Figures S5A and

S5B). This included a strongly adapting cell type that was most

sensitive to changes in temperature similar to the C. elegans

AFD neuron (Figure 5F; Clark et al., 2006, 2007; Kimura et al.,

2004). Another cell type largely reported absolute temperature

levels as has been suggested for the AWC and AIY neurons (Fig-

ure 5F; Kuhara et al., 2008). We do note, however, that corre-

spondences between C. elegans neurons and reported ANN re-

sponses are weaker than for zebrafish; the AFD sensory neuron

preferentially encodes rates of temperature change but displays

a larger response to changes in temperature levels than our

network unit, while AWD has slower response kinetics than the

corresponding network unit. Intriguingly, while the C. elegans

ANN was as robust to random unit deletions as the zebrafish

ANN (Figure S5K), it was considerably more sensitive to single-

cell-type ablations. Removal of AFD-like units severely reduced

gradient navigation performance and especially affected cryo-

philic bias (Figure 5G), as reported for C. elegans itself (Chung

et al., 2006). This is particularly interesting since ablating the

closest matching cell type in the zebrafish network (Fast ON, Fig-

ure S5D) only has a very small effect on navigation performance

(Figure 4C). This indicates a shift in unit requirement concomitant

to the change in available motor repertoire. A weaker phenotype

was observed when ablating AWC/AIY-like neurons (Figures 5G

and 5H) whose role in C. elegans thermotaxis is less well estab-

lished (Garrity et al., 2010). The overall stronger dependence of

network performance on individual cell types suggests a less

distributed representation in the C. elegans ANN compared to

the zebrafish ANN, which was also mirrored in sparser inter-

type connectivity (Figure S5I). This may well be reflected in the

animals themselves, and in fact a recent paper applied a control

theory paradigm to suggest links between C. elegans body

bends and single motor neurons (Yan et al., 2017).

DISCUSSION

ANNs and BNNs are very successful in solving problems of

various complexities, but how these networks accomplish

such tasks is still largely unclear. Uncovering the fundamental

principles that govern these operations is particularly daunting

in the case of BNNs because experimental access is limited,

and the underlying implementation is not necessarily aligned

with human intuition. The principles underlying the operation of

ANNs on the other hand are likely easier to dissect because

they are made by man and because activity states in such net-

works can be readily queried. However, it is largely unclear to

what extent the responses of units in the models correspond

to neuronal responses observed in biological brains; in other
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Figure 5. A Network for C. elegans Thermotaxis

(A) Architecture of the C. elegans convolutional network. Note that the architecture is the same as in Figure 1D except for the predictive output, which is matched

to the behavioral repertoire of C. elegans.

(B) Schematic of the task of the C. elegans ANN: the network uses a 4 s history of experienced temperature and generated behaviors to predict the resting

temperature after a C. elegans behavior.

(C) Log-squared error of temperature predictions on test dataset during training.

(D) Occupancy in a radial heat gradient of naive (black) and trained (orange) C. elegans networks. Dashed vertical line at 26�C indicates desired temperature.

(E) Comparison of all unit responses in the temperature branch of the zebrafish and C. elegans heat gradient ANN in principal-component analysis (PCA) space

when presenting the same time varying stimulus used in Figure 2B to both networks. The first four principal components capture >95%of the variance. Plots show

occupational density along each PC for the zebrafish network (blue) and the C. elegans network (orange).

(F) Responses of two C. elegans-like cell types when presenting a temperature ramp depicted in black on top. The red type shows adapting responses like the

AFD neuron (cf. Clark et al., 2007; Kotera et al., 2016), while the orange type reports temperature level as suggested for the AWC/AIY neurons (cf. Kuhara

et al., 2008).

(G) Occupancy in radial heat gradient for trained C. elegans networks (black) and after ablations of the indicated cell types (colored lines).

(H) Quantification of gradient navigation performance as fraction within 1�C of desired temperature for naive and trained C. elegans networks as well as after

ablations of the indicated cell types. Ablations are ordered by severity of phenotype.

(I) Responses of two C. elegans cell types with strong gradient navigation phenotypes in (H) to the same temperature ramp presented in (F).

(J) For each network type the number of principal components needed to explain at least 99% of the total network unit variance when the stimulus depicted in

Figure 2B is presented to the network. Naive networks, black; fully trained, orange. Note, that naive reinforcement learning networks already require 2 com-

ponents since these networks have fewer units overall and therefore have a noisier representation in the naive state.

Shading and error bars in all panels indicate bootstrap SE across 20 networks. See also Figure S5.
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words, to what extent biological brains and ANNs converge on

similar solutions of algorithmic implementation.

Recent work compared image classification ANNs and visual

processing in the primate ventral visual stream to show that

ANNs can indeed share representations and processing strate-

gies with BNNs (Khaligh-Razavi and Kriegeskorte, 2014; Yamins

and DiCarlo, 2016; Yamins et al., 2014). Furthermore, networks

that have been trained to learn a place-cell-like encoding give

rise to units mimicking entorhinal cell types such as grid cells

(Banino et al., 2018; Cueva and Wei, 2018). This apparent

convergence in processing strategies suggests that ANNs can

give insight into BNN function. This strategy helped gain addi-

tional insights into retinal processing by constraining an ANN

model to predict retinal ganglion cell responses to natural scenes

(Maheswaranathan et al., 2018; McIntosh et al., 2016) and to

study the role of interneurons in leech withdrawal reflexes (Lock-

ery et al., 1989). However, it is unclear how generalizable such

results are across stimulus modalities or if they generalize to

behavioral task constraints.

Here, we extended these approaches by asking whether

constraining ANNs by the behavioral task of heat gradient navi-

gation using a species-specific behavioral repertoire would lead

to sensory representations observed in a larval zebrafish BNN. In

other words, to what extent these ANNs arrive at a solution

through training that is similar to the solution that evolved in

zebrafish to perform efficient navigation of heat gradients. We

followed two complementary modeling strategies: one ANN

implements a predictive forward model of the world and was

trained to predict the consequences of a behavioral action within

a heat gradient; the other network type was trained via reinforce-

ment learning to implement a successful behavioral policy.

Importantly, both of these strategies are biologically plausible,

but it is currently unclear whether larval zebrafish encode an

explicit prediction of behavioral consequences as assumed by

the predictive ANN or if such a prediction is rather performed

implicitly as in the reinforcement learning model.

Comparing behavioral navigation strategies revealed clear

similarities between the predictive ANN and zebrafish, while the

reinforcement learning model relies on a different strategy. This

suggests that on a behavioral level the predictive model is closer

to larval zebrafish. However, since strategies employed by rein-

forcement learning models are dependent on the actual reward

strategy, this does not rule out that a more comparable reinforce-

ment learning model could be found. Since thermal gradient

navigation is an innate larval zebrafish behavior the poorer corre-

spondence of the reinforcement learning model could on the

other hand also suggest that such training approaches are less

well suited to model innate circuits.

Concomitant with learning to navigate heat gradients, stimulus

representations in the ANNs changed as well. In naive networks,

one principal component can explain >99% of the variance in

stimulus responses (Figure 5J). During training, representational

complexity increased in all predictive ANN types as evidenced

by an increase in the number of principal components necessary

to explain response variance (Figure 5J). And post-training, on a

neural level we could show that processing and representation in

the predictive thermotaxis ANN bears striking similarities to BNN

representations in zebrafish. This is apparent by a clear parallel in
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stimulus representation between zebrafish hindbrain neurons

and the predictive ANN, including splitting of information into

ON and OFF channels as well as cell types representing the

derivative of the stimulus across time. Such representations

are also prominent in other modalities such as the visual system.

Here, cells compute the spatial derivative of the stimulus, and

image classification ANNs represent this information in their

initial layers as well (Yamins and DiCarlo, 2016). This indicates

a reuse of prominent computational motifs across sensory

modalities.

Interestingly, while the reinforcement learning network learns a

similar representation in spite of a very different modeling strat-

egy, the Fast OFF cell type that reports rates of temperature

decrease is conspicuously absent from this network (cf. Figures

2A with S2E). Given that this cell type most strongly discrimi-

nates turns and straight swims in the predictive ANN (Figure 3D)

and that both zebrafish and the predictive ANNmodulate turning

based on gradient direction (Figure 1I), it is interesting to specu-

late that this cell type is absent because of the different behav-

ioral strategy employed by the reinforcement learning network.

Interestingly, sensory representations get tuned when chang-

ing the available motor repertoire from that of zebrafish to that of

C. elegans. This is apparent for the role of the response type

most closelymatching theC. elegansAFD neuron. This response

type is highly similar to the zebrafish Fast ON type (Figure S5D).

But while ablations of the Fast ON type have very little effect on

zebrafish ANN navigation performance (Figure 4C), it is abso-

lutely critical for C. elegans ANN function (Figures 5G and 5H)

mirroring its importance for navigation behavior in the worm

(Chung et al., 2006). Taken together these results strongly argue

that stimulus representations in BNNs and ANNs converged on a

stereotypical solution throughout evolution and training respec-

tively and that stimulus representations are likely constrained by

behavioral goals and motor repertoires (Rosenblatt, 1962).

Our architectural design choice for the ANN restricted tempo-

ral convolutions to the input layer of the ANN, which is different

from the zebrafish BNN. These differences are reflected in differ-

ences of inter-type connectivity as well, resulting in connections

that are different from connectivity suggested by a zebrafish cir-

cuit model. Also, in C. elegans AFD is connected to AIY, but this

connection is absent in our model. The fact that we still observed

similarities in representations suggests that while connectivity

can constrain representations similar representations can arise

in spite of differing connectivity. A similar observation has

recently been made in a Drosophila visual processing model in

which connectivity constrainswhere representations arise within

the network but not if they arise (Tschopp et al., 2018).

Constraining an ANNby a heat gradient navigation task specif-

ically allowed us to form testable predictions about the larval ze-

brafish and C. elegans BNN. This led to the identification of a

novel heat response type, ‘‘Integrating OFF’’ cells, in the larval

zebrafish cerebellum. Although ablation of this response type

in the model suggests that its role is minor, one can speculate

that the integrating properties heremight add stability to the nav-

igation behavior, very much like integrating components in tech-

nical control systems. In our case, the role of the Integrating OFF

type in providing stability to the system may well be reflected in

its anatomical location within the cerebellum since it is thought



that this structure likely tunes and stabilizes motor output rather

than being involved in the generation of the motor commands

themselves.

At the same time, the differential effects of deleting fish-like

types on navigation performance allows for the generation of

testable hypotheses about the relative importance of individual

cell types in the zebrafish BNN especially since the two most

important response types in the ANN (Slow ON and Fast OFF)

are also most strongly implicated in temperature processing in

larval zebrafish (Haesemeyer et al., 2018). Virtual ablations also

make strong predictions about the role of two OFF cell types in

thermal navigation of C. elegans (Figure 5I). OFF type cells

have so far not been implicated inC. elegans thermal navigation,

but recent whole-brain imaging data in response to thermal stim-

uli suggest that thermosensitive OFF types do exist inC. elegans

(Kotera et al., 2016).

In summary, the strong parallel between ANNs and BNNs

implies that artificial networks with their greater amenability to

analysis and manipulation over BNNs can serve as powerful

tools to derive neural principles underlying cognition in biological

brains.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Model training data and training checkpoints This paper https://doi.org/10.5281/zenodo.3258831

Software and Algorithms

Training, modeling and analysis framework – Python, Tensorflow This paper https://github.com/haesemeyer/GradientPrediction
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Florian

Engert (florian@mcb.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

No animal experiments were performed for this study. Experimental data used is from Haesemeyer et al. (2015, 2018).

METHOD DETAILS

All analysis in this study was performed in an automated manner. All sample sizes were fixed before the start of analysis. No archi-

tectural adjustments on the networks were performed. The structure of the zebrafish predictive heat gradient network as presented

was simply the first tried architecture that was trainable and through the branched structure had the property of containing units that

are exclusive to one input modality. The other networks were then created such that they use the exact same structure to keep archi-

tectural changes to a minimum, essentially so that only changes to the outputs were necessary.

We note that we observed that the complexity of the five layer networks presented in the manuscript is not necessary and in fact

two-layer architectures suffice and arrive at the same representation (data not shown).

Software framework
All neural networks were implemented in Tensorflow (Abadi et al., 2016) using Python 3.6. All data analysis was performed in Python

3.6 using numpy, scipy, and scikit learn (Pedregosa et al., 2011) as well as matplotlib and seaborn for plotting.

Behavior generation
All simulations were run at an update frequency of 100 Hz. Since zebrafish swim in discrete bouts, network predictions were only

evaluated whenever swim bouts were instantiated. This occurred at a baseline frequency of 1 Hz (i.e., with a probability of 0.01 given

the update frequency). Even though C. elegansmoves continuously, behavioral modules are only selected with slow dynamics (Ryu

and Samuel, 2002). Hence to reduce computational load, models and behavior selections were only evaluated with a frequency of

0.1 Hz (i.e., with a probability of 10�4 given the update frequency).

Zebrafish

Zebrafish behavioral parameters were based on swim bouts enacted by freely swimming larval zebrafish during heat gradient nav-

igation (Haesemeyer et al., 2015). When the selected behavior was ‘‘stay’’ the virtual fish stayed in place for one update cycle. For all

other choices, displacements were drawn at random in mm from a gamma distribution according to:

d � Gð2:63; 7:25Þ=9
Turn angles (heading changes) for the three swim types were drawn at random in degrees from normal distributions according to:

DaStraight � N ð0; 2Þ
DaLeft � N ð�30; 5Þ
DaRight � N ð30; 5Þ
Each behavior was implemented such that each swim lasted 200 ms (20 timesteps), the average length of zebrafish swim bouts.

The heading change was implemented within the first frame while the displacement was evenly divided over all frames. This is a
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simplification over true zebrafish behavior, where heading changes precede displacements as well but where both occur with distinct

acceleration and deceleration phases.

The goal of these choices was to approximate larval zebrafish behavior rather than faithfully capture all different swim types.

C. elegans

C. elegans behavioral parameters were based on freely crawling worms navigating temperature gradients (Ryu and Samuel, 2002).

When the selected behavior was ‘‘continue’’ or while no behavior was selected, the virtual worm was crawling on a straight line with

heading jitter. The per-timestep displacement was drawn in mm according to:

d � N ð16; 5:3Þ=ð60 � 100Þ
The per timestep heading jitter (random walk in heading direction space) was drawn in degrees according to:

Dajitter � N ð0; 0:1Þ=100
The other behaviors, pirouettes, sharp turns and shallow left or right turns were implemented as heading angle changes together with

displacement drawn from the distribution above enacted over a total time of 1 s. The heading angle changeswere drawn in degrees at

random as follows:

DaPirouette � N ð180; 10Þ
DaSharp turn � N ð±45; 5Þ
DaLeft � N ð�10; 1Þ
DaRight � N ð10; 1Þ
Again, the goal of these choices was to approximate C. elegans movement statistics during heat gradient navigation rather than

faithfully recapitulating the full behavioral repertoire.

Artificial neural networks
Architecture

All networks were designed with the same basic architecture. Initial branches separately perform convolution on and then process

the three inputs, temperature history, speed history and delta-heading history through two hidden layers. The outputs of these sepa-

rate branches were subsequently concatenated and processed within another set of three hidden layers before being transformed to

the desired output (prediction in case of predictive networks, action probability in the case of the reinforcement learning network).

This general architecture was both biologically motivated and at the same time had the advantage that single-modality units could

be analyzed within the initial branches.

Network inputs consisted of a 2D matrix, with 4 s of temperature, speed, and delta-heading history at a simulation rate of 100 Hz.

The first network operation was a mean-pooling, binning the inputs to a model rate of 5 Hz, the same rate at which larval zebrafish

imaging data during heat stimulation was previously analyzed. After pooling, the inputs were split into the temperature, speed, and

delta-heading components and each component was fed into its corresponding processing branch.

For predictive networks input branches were designed with 40 linear rectifying convolutional layers each, that each learned one 1D

filter over the whole 4 s of history (20 weights). Convolution was performed such that only one output datapoint per filter (the

dot-product of the filter with the input) was obtained. Hidden layers within the network had 512 rectifying linear units (or 256 or

1024 for the initial tests in Figure 1D). The output layer of the predictive networks consisted either of 4 linear units (for zebrafish net-

works) or 5 linear units (for C. elegans networks). The purpose of the output layer was to compute the temperature (or angle to a light

source) 500ms after enacting the chosen swim type in the case of zebrafish networks or 1 min of straight continuous movement after

enacting the chosen behavior in the case of C. elegans networks.

The zebrafish reinforcement learning network had the same architecture. However, since training involved the generation of >107

swims within a virtual gradient, the network complexity was reduced to reduce training time. This meant that only 20 convolutional

layers were use per input branch and each hidden layer only consisted of 128 units. With these adjustments, training of a reinforce-

ment learning model took about the same time as training the predictive model. The output layer of the reinforcement learning

network consisted of a softmax layer with 4 units, computing the desired probability of the 4 zebrafish behaviors, p(‘stay’),

p(‘swim straight’), p(‘turn left’) or p(‘turn right’).

Training data generation and supervised network training for predictive networks

For both zebrafish andC. elegans, training data were generated by randomly choosing behavioral modules according to the statistics

given above without any influence of temperature on behavioral choices. For training data generation the virtual animals explored two

types of circular arenas with a radius of 100mm each: In one arena, temperature increased linearly from 22�C at the center to 37�C at

the periphery, while in the other arena the gradient was reversed. Training datasets were generated from the random walks through

these arenas by simulating forward from each timestep for each possible behavioral choice. This way the true temperatures resulting
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from each behavioral choice were obtained together with the experienced temperature and behavioral history. For the zebrafish

phototaxis ANN, the same strategy was employed but instead of recording temperature history and prediction, the angle to a

light-source in the center of one arena with a radius of 100 mmwas calculated. For each network type a test-dataset was generated

in the same manner to be able to evaluate prediction performance.

Networks were trained using stochastic gradient descent onmini-batches consisting of 32 random samples each. Notably, training

was not successful when randomly mixing training data from both arena types. Every training epoch was therefore split into two

halves during each of which only batches from one arena type training dataset were presented. We used an Adam optimizer [learning

rate = 10�4, b1 = 0.9, b2 = 0.999, ε = 10�8] during training (Kingma and Ba, 2014), optimizing the squared loss between the network

predicted temperature and the true temperature in the training dataset. Test batches were larger consisting of 128 samples each,

drawn at random from both arena types.

Network weights were initialized such that gradient scales were kept constant across layers according to Glorot and Bengio (2010)

by being drawn from a uniform distribution on the interval:
h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðNin + NoutÞ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðNin + NoutÞ

p i

where Nin is the number of units in the previous and Nout the number of units in the current layer.

For training regularization, we applied drop-out in all hidden layers, with a probability of 0.5 as well as weight decay, penalizing the

squared sum of all weights in the network (a = 10�4). Networks were trained for 10 full epochs.

Training of zebrafish reinforcement learning networks

Reinforcement learning networks learned to navigate temperature gradients by alternating episodes of exploring two circular arenas

with a radius of 100 mm: In one arena, temperature increased linearly from 22�C at the center to 37�C at the periphery, while in the

other arena temperature increased linearly from 14�C at the center to 29�C at the periphery. The second arena type was necessary as

the networks otherwise only learned high temperature avoidance but did not learn to navigate away from temperatures below the

preferred temperature, Tpreferred = 26�C.
At each timestep behavior evaluation occurred with a probability of 0.01 leading to a baseline movement frequency of 1 Hz. With a

probability pexplore = 0.25 a behavior was chosen at random (exploration) and such moves were never rewarded. Otherwise the

network was fed the navigation history over the last four seconds as input and subsequently the probability outputs of the network

were used to select an action. After implementing an action, a reward for that action was calculated according to:

RðstayÞt = � ��T � Tpreferred

��
pre

.
1000� ðt � tlast moveÞ =300
�

Rðstraight; left; rightÞt = �T � Tpreferred

��
pre

� ��T � Tpreferred

��
post

Essentially the reward for movement actions reflected how much closer the agent got to the preferred temperature, while the pun-

ishment for staying was dictated by the current distance from the preferred temperature and was additionally punished for the time

the network stayed in the current position - this was done to avoid learning the simple strategy of resting at the preferred temperature

which is never observed in larval zebrafish. After calculating all rewards for one navigation episode, the discounted return for each

move was calculated according to:

Gt =
XM�t

k =0

0:63kRt + k + 1;

where M is the total number of selected behaviors within the epoch. The discounting above effectively implemented rewarding

streaks of 10 bouts since the reward influence decayed to 1% after 10 movements. In all equations above, timesteps t refer to actual

behavior selections, not simulation timesteps.

At the end of each episode the calculated rewards Gt and their respective history inputs were shuffled and hence used for training

of the network in pseudo-random order. This shuffling was done to break high autocorrelations within the navigation data which

negatively impacted training. We used an Adam optimizer [learning rate = 10�5, b1 = 0.9, b2 = 0.999, ε = 10�8] during training (Kingma

and Ba, 2014), minimizing

L = log
�
pðchosenÞt

� � Gt

Training was performed using backpropagation minimizing the log-loss of the selected action scaled by the delivered discounted

return.

Weights in the reinforcement learning networks were initialized as above for the predictive networks. In this case for training reg-

ularization we applied drop-out in all hidden layers, with a probability of 0.9 as well as weight decay as above. Networks were trained

for 1500 navigation epochs with the number of steps N in epoch i equal to

N = 106 + 1000 � i
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This schedule of increasing epoch length was chosen so that networkswould initially be exposed tomore starting positions within the

virtual gradient.

Predictive network navigation

The networks were used for heat gradient (or light) navigation in the following manner: For trained zebrafish networks each timestep

had a probability of 0.01 of triggering a behavior (baseline movement frequency of 1 Hz - after evolution this probability depended on

the output of p(Move), see below). For C. elegans networks the probability of triggering a behavior was set to 10�4, resulting in a fre-

quency of 0.1 Hz. If a timestep was not selected, zebrafish networks stayed in place whileC. elegans networks continued to move as

per the statistics above.

At each behavior evaluation, the preceding 4 s of sensory history as well as speed and delta-heading history were passed as inputs

to the network. The network was subsequently used to predict the temperatures resulting from each possible movement choice (or

the light angle in case of the phototaxis network). The goal temperature was set to be 26�C and behaviors were ranked according to

the absolute deviation of the predicted temperature from the goal temperature. For zebrafish networks, the behavior with the smallest

deviation was chosen with a probability of 0.5, the 2nd ranked with a probability of 0.25 and the last two each with a probability of

0.125. For C. elegans networks, the highest ranked behavior was chosen with a probability of 0.5 the second highest with probability

0.2 and the remaining three behaviors with probability 0.1 each.

The chosen behavior was subsequently implemented according to the statistics above. Evaluations only resumed after a behav-

ioral module was completed. Whenever a behavior would move a virtual animal outside the circular arena, the behavioral trajectory

was reflected at the boundary.

Reinforcement learning network navigation

These networks operated as the predictive networks above. The only difference is that with pexplore = 0.25 a behavior was chosen at

random, while in all other cases the network itself set the probability of each behavior as its output and this probability was

subsequently used to pick a behavior. We note that we kept pexplore at the same value as used during training and that while its value

influences navigation performance, the effect is relatively small in the range from 0.25 to 0.5 and that as expected the behavioral

strategy itself remains unchanged.

Evolutionary algorithm to optimize control of swim frequency

A set of 512weights was used to give the zebrafish networks control over swim frequency. A dot-product between the activations a of

the last layer of the temperature branch of the network and these weights w was transformed by a sigmoid function to yield a swim

frequency between 0.5 Hz and 2 Hz, by computing swim probabilities between 0.005 and 0.02 according to:

pðSwimÞ = 0:015

1+ e a! w!+ 0:005

To learn a set of weights w that would optimize gradient navigation performance an evolutionary algorithm was used as follows:

1. Initialize 512 weight vectors, w � Nð0; 1Þ
2. For each weight vector run gradient simulation using it to control p(Swim)

3. Rank weight vectors according to average deviation from desired temperature

4. Pick 10 networks with lowest error and 6 networks at random

5. Form 16*16 mating pairs, mating each network with each other and with itself

6. For each mating pair generate two child vectors by randomly picking each vector element with probability 0.5 from either

parent

7. Add random noise to each child vector, ε � Nð0;0:1Þ
8. The 512 created child vectors form the next generation. Repeat from step 1.

Evolution was performed for 50 generations. The average across all 512 weight vectors in the final generation was used to control

swim frequency during gradient navigation.

Data analysis
For all network types except the phototaxis network 20 networks were initialized and trained. This number was decided at the begin-

ning, before any analysis was performed. For the phototaxis network a total of 14 networks was trained after observing the small

variation across other network types. All presented data are an average across networks which is usually plotted alongside the boot-

strap standard error as indicated in figure legends.

Behavior analysis
For zebrafish and networks, swim frequency within the heat gradient was determined by dividing the number of swim starts within

temperature bins by the total time spent within that bin during actual or virtual navigation.

To determine turn modulation within the heat gradient (Figure 1I) swims were divided based on the temperature change caused by

the preceding swim. Temperature changes > 0.5�C were considered ‘‘up gradient,’’ < �0.5�C ‘‘down gradient.’’ To normalize for

arena effects independent of temperature, the same values were computed during uniform conditions by analyzing swims as if a
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gradient was present during that time. Subsequently, average turning angles for ‘‘up gradient’’ and ‘‘down gradient’’ bouts for each

fish and network during gradient conditions were divided by the average turning angles during uniform conditions.

To determine the swim frequency during the time varying stimulus (Figure S1J) 5000 repetitions of presenting the stimulus to each

predictive network were performed and the swim probability (i.e., the probability that the network generated either a ‘‘straight swim,’’

a ‘‘left turn’’ or a ‘‘right turn’’) as well as the probability of the network generating any behavior (including ‘‘stay’’) was calculated. Fish

data are replot fromHaesemeyer et al. (2015). To analyze turn angles (Figure S1K) average turnmagnitudes were calculated for times

were the stimulus was rising > 0.5�C/s, ‘‘rising phase,’’ or falling < �0.5�C/s, ‘‘falling phase’’ for each fish and network.

White noise analysis
For white noise analysis zebrafish predictive networks were presented with randomly fluctuating temperature stimuli. As during

navigation simulations, networks enacted behaviors based on temperature prediction at a frequency controlled by p(Move). The

stimulus used for white noise presentation was modeled after the stimulus used previously in freely swimming larval zebrafish (Hae-

semeyer et al., 2015); however, since there was no water which buffers changes in temperature, the stimulus was switched at shorter

intervals and the probed temperature space was larger as well. This allowed for fewer samples overall to result in well-structured

filters. Stimulus temperatures in �C were drawn from a Gaussian distribution:

T � N ð32; 6:8Þ
Temperatures drawn from this distribution are almost always above Tpreferred, and the filters hence reflect the behavioral reaction

underlying heat avoidance as in Haesemeyer et al. (2015).

Temperature values were switched at random times with intervals in ms drawn from a Gaussian distribution as well:

Dt � N ð50; 10Þ
As during navigation simulations, the executed behaviors were used to derive the behavioral history input to the network during the

simulations. For each network 107 timesteps were simulated and the average temperatures in the 4 s preceding each turn or straight

swim were computed.

During the same stimulus scheme cluster average unit activations (Figures 3B–3F) were computed as well by triggering the activity

of each unit on a given behavior (‘‘straight’’ or ‘‘turn’’) and subsequently for each fish averaging the activations across all swims and all

units within a given cluster.

Unit response clustering
All clustering was performed on the temperature branch of the networks. To cluster artificial neural network units into response types,

the same temperature stimulus was presented to the networks that was previously used to analyze temperature representation in

larval zebrafish and the same clustering approach was subsequently employed as well (Haesemeyer et al., 2018). Specifically, the

pairwise correlations between all unit responses across all networks of a given type were calculated. Subsequently spectral clus-

tering was performed with the correlation matrix as similarity matrix asking for 8 clusters as this number already resulted in some

clusters with very weak responses, likely carrying noise and since PCA across network units furthermore suggested an effective

dimensionality of seven of the response space. The cluster means were subsequently used as regressors and cells were assigned

to the best-correlated cluster with a minimal correlation cutoff of 0.6. Cells that did not correlate with any cluster averages above

threshold were not assigned to any cluster.

For C. elegans ANN units the same stimulus was used for clustering and temperature ramp responses were displayed for these

obtained clusters as these are more generally used for C. elegans characterizations.

To assign units in the mixed branch to clusters in the analysis of the retraining experiments, the same temperature stimulus was

presented to the zebrafish ANN while speed and delta-heading inputs were clamped at 0. Correlation to cluster means of the

temperature branch, again with a cut-off of 0.6, was subsequently used to assign these units to types.

Connectivity
Connectivity was analyzed between the first and second hidden layer of the temperature branch. Specifically, the average input

weight of a clustered type in the first layer to a clustered type in the second layer was determined. The average weight as well as

standard deviation across all networks and units was determined. If the standard deviation of a connection was larger than the

average weight, the weight was set to 0.

Ablations and retraining of neural networks
Network ablations were performed by setting the activations of ablated units to 0 irrespective of their input. Since fish-like deletions

would removemore units from the network overall than non-fish like deletions (63 versus 29% of all units) the number of ablated units

in non-fish ablations was matched by additionally removing a random subset of units.

Retraining was performed using the same training data used to originally train the networks, and evaluating predictions using the

same test dataset. During retraining, activations of ablated units were kept at 0 and weight and bias updates of units were restricted

to either the hidden layers in the temperature branch or in the mixed branch.
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To identify unit types in the temperature or mixed branch after ablation or retraining, correlations to the corresponding cluster

averages were used while presenting the same temperature stimulus used for clustering to the temperature branch and clamping

the speed and delta-heading branch to 0.

Comparison of representations by PCA
To compare stimulus representations across networks, our standard temperature stimulus was presented to all networks. Units from

all networks of the types to compare (zebrafish thermal navigation versus zebrafish phototaxis or zebrafish versusC. elegans thermal

navigation) were pooled and principal component analysis was performed across units. The first four principal components captured

more than 95% of the variance in all cases and were therefore used for comparison by evaluating the density along these principal

components across network types.

To analyze the representational complexity of a network (type) the same temperature stimulus was presented and principal

component analysis was performed across all units in a given network (type). It was subsequently determined how many principal

components cumulatively explained at least 99% of the total variance across all units.

Matching of ANN and zebrafish heat response types
To correspond clusters in the predictive and reinforcement learning zebrafish heat navigation networks, correlation analysis between

the average response cluster activity and the average activity of zebrafish response clusters in the Rh 5/6 region of the hindbrain

(Haesemeyer et al., 2018) was performed. Since the temperature stimulus varies with slow dynamics, leading to large correlations

even in the case of spurious matches, correlations were limited to the sinewave and immediately following temperature step period

(60-105 s of the stimulus). To be considered a matching type a minimum Pearson correlation of 0.6 was required.

Identification and mapping of novel zebrafish response types
To identify potential novel zebrafish response types, ANN cluster average responses were used for regressor analysis (Miri et al.,

2011) by probing the zebrafish whole brain imaging dataset. The cluster average response was correlated to every cell in the zebra-

fish dataset. All neurons with a response correlated > 0.6 to these cluster averages was considered part of the response type (but we

note that even when increasing or decreasing this threshold no neurons could be identified that matched the ON-OFF type in the

sense that no neurons in the zebrafish dataset showed both an ON and an OFF response).

Tomap these identified neurons back into the zebrafish brain, we used the neuron’s coordinates in the reference brain generated in

the imaging study.

Linear model based mapping of zebrafish temperature response types
To test similarities in temperature encoding between the zebrafish temperature ANN and BNN a linear model was used to relate unit

activity in the temperature branch of one ANN (ANN 0, chosen arbitrarily) to activity across all cells in the zebrafish BNN. For this pur-

pose ridge regression (a = 0.1) was used to fit a multiple regression model relating the first two trials of stimulus presentation in the

1024 units present in the ANN to the calcium activity during the first two trials of stimulus presentation in 699840 neurons across the

zebrafish brain dataset. Subsequently, the model was applied to the ANN responses of the third stimulus presentation trial and

the quality of prediction (R2) of the third trial of zebrafish neuron responses was scored. At the same time a self-prediction score

was calculated as the R2 of the correlation between the sum of the first two trial responses for each cell and the third trial response

of the same cell.

For the presented data, a neuron was considered identified positively by this method if R2 R 0.25, i.e., if the linear prediction ex-

plained at least 25% of the variance in the neuron’s response during the third trial provided that the prediction score was not higher

than the self-prediction score. The rationale behind this filtering step was that a model fit on the first two trials should not be better in

predicting the third trial than the first two trials themselves.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of samples (n) generally refers to comparisons across networks or fish and is indicated in the figure legends.

Displayed errors (bars or shadings) were computed as bootstrap standard errors in all plots.

For turn strength comparisons a non-parametric Wilcoxon test across networks and fish was used.

To compute the expected overlap of ANN prediction and zebrafish clustering analysis (Figure S2C0) 1000 shuffles of the positive

prediction labels were performed and the average overlaps across these shuffles are given in the figure.

DATA AND CODE AVAILABILITY

The full source code of this project is available on Github (https://github.com/haesemeyer/GradientPrediction) and all relevant data

are deposited on Zenodo at (https://doi.org/10.5281/zenodo.3258831).
e6 Neuron 103, 1123–1134.e1–e6, September 25, 2019

https://github.com/haesemeyer/GradientPrediction
https://doi.org/10.5281/zenodo.3258831

	Convergent Temperature Representations in Artificial and Biological Neural Networks
	Introduction
	Results
	ANN Models for Heat Gradient Navigation
	Representation in the ANN Parallels the Zebrafish Brain
	White Noise Stimuli Reveal Shared Processing Strategies
	Zebrafish-like Types Form a Critical Core of ANN Function
	Changes in Motor Repertoire Tune Sensory Representations

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Method Details
	Software framework
	Behavior generation
	Zebrafish
	C. elegans

	Artificial neural networks
	Architecture
	Training data generation and supervised network training for predictive networks
	Training of zebrafish reinforcement learning networks
	Predictive network navigation
	Reinforcement learning network navigation
	Evolutionary algorithm to optimize control of swim frequency

	Data analysis
	Behavior analysis
	White noise analysis
	Unit response clustering
	Connectivity
	Ablations and retraining of neural networks
	Comparison of representations by PCA
	Matching of ANN and zebrafish heat response types
	Identification and mapping of novel zebrafish response types
	Linear model based mapping of zebrafish temperature response types

	Quantification and Statistical Analysis
	Data and Code Availability



